首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Annual plants usually flower and set seed once before senescence results in the death of the whole plant (monocarpic senescence). Leaf senescence also occurs in polycarpic perennials; even in "evergreen" species individual leaves senesce. In the annual model Arabidopsis thaliana sugars accumulate in the senescent leaves and senescence is accelerated by high sugar availability. Similar to A. thaliana, sugar contents increased with leaf age in the perennial Arabis alpina grown under warm conditions (22 C day/18 night). At 5 C, sugar contents in non-senescent leaves were higher than at a warm temperature, but dependent on the accession, either sugars did not accumulate or their contents decreased in old leaves. In A. alpina plants grown in their natural habitat in the Alps, sugar contents declined with leaf age. Growth at a cold temperature slightly delayed senescence in A. alpina. In both warm and cold conditions, an external glucose supply accelerated senescence, but natural variation was found in this response. In conclusion, sugar accumulation under warm conditions could accelerate leaf senescence in A. alpina plants, but genotype-specific responses and interactions with growth temperature are likely to influence senescence under natural conditions.  相似文献   

3.
Zhao W  Lin ZX  Zhang ZQ 《Cell research》2004,14(1):60-66
To examine the role of gap junctions in cell senescence, the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore, cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis, p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin(10mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis, elevation of p53 expression, loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.  相似文献   

4.
The nitric oxide (NO)-deficient mutant nos1/noa1 exhibited an early leaf senescence phenotype. ETHY-LENE INSENSITIVE 2 (EIN2) was previously reported to function as a positive regulator of ethylene-induced senescence. The aim of this study was to address the question of how NO interacts with ethylene to regulate leaf senescence by characterizing the double mutant ein2-1 nos1/noa1 (Arabidopsis thaliana). Double mutant analysis revealed that the nos1/noa1-mediated, dark-induced early senescence phenotype was suppressed by mutations in EIN2, suggesting that EIN2 is involved in nitric oxide signaling in the regulation of leaf senescence. The results showed that chlorophyll degradation in the double mutant leaves was significantly delayed. In addition, nos1/noa1-mediated impairment in photochemical efficiency and integrity of thylakoid membranes was reverted by EIN2 mutations. The rapid upregulation of the known senescence marker genes in the nos1/noa1 mutant was severely inhibited in the double mutant during leaf senescence. Interestingly, the response of dark-grown nos1/noa1 mutant seedlings to ethylene was similar to that of wild type seedlings. Taken together, our findings suggest that EIN2 is involved in the regulation of early leaf senescence caused by NO deficiency, but NO deficiency caused by NOS1/NOA1 mutations does not affect ethylene signaling.  相似文献   

5.
Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways.Here, we identified a rapid leaf senescence 3(rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 gene had a single-nucleotide substitution(G→A) at the splice site of the 10~(th)intron/11~(th) exon, resulting in the cleavage of the first nucleotide in 11 ~(th) exon and premature termination of RLS3 protein translation.Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions furtherrevealed that the rls3 mutant displayed rapid leaf senescence.Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.  相似文献   

6.
Senescence is the process of programmed degradation. The G2 line of pea exhibits apical senescence-delaying phenotype under short-day (SD) conditions, but the mechanism regulating the apical senescence is still largely unknown. Gibberellin (GA) was proved to be able to delay this apical senescence phenotype in G2 pea grown under long-day (LD) conditions. Here we show that the initiation of cell death signals in the terminal floral meristem was involved in the regulation of apical senescence in pea plants. SD signals prevented the formation of the cell death region in the apical mersitem. Moreover, GA3 treatment could effectively inhibit the occurrence of cell death-mediated apical senescence in LD-grown apical buds. Therefore, our data suggest that the prevention of apical senescence in SD-grown G2 pea through GA3 treatment may be largely responsible for the regulation of occurrence of the DNA fragmentation in apical meristem.  相似文献   

7.
<正>Research concerning senescence has become a hotspot since the conception of‘cellular senescence’was put forward by Drs.Hayflick and Moorhead over five decades ago[1].Recently,a paper published in Science by Kang and colleagues,which this article aims to comment on,provides evidence of a new pathway involved in senescence[2].Senescence is a physiological and pathological process induced by numerous factors,during which cell growth ceases  相似文献   

8.
Regulation of Leaf Senescence and Crop Genetic Improvement   总被引:2,自引:0,他引:2  
Leaf senescence can impact crop production by either changing photosynthesis duration,or by modifying the nutrient remobilization efficiency and harvest index.The doubling of the grain yield in major cereals in the last 50 years was primarily achieved through the extension of photosynthesis duration and the increase in crop biomass partitioning,two things that are intrinsically coupled with leaf senescence.In this review,we consider the functionality of a leaf as a function of leaf age,and divide a leaf’s life into three phases:the functionality increasing phase at the early growth stage,the full functionality phase,and the senescence and functionality decreasing phase.A genetic framework is proposed to describe gene actions at various checkpoints to regulate leaf development and senescence.Four categories of genes contribute to crop production:those which regulate (I) the speed and transition of early leaf growth,(II) photosynthesis rate,(III) the onset and (IV) the progression of leaf senescence.Current advances in isolating and characterizing senescence regulatory genes are discussed in the leaf aging and crop production context.We argue that the breeding of crops with leaf senescence ideotypes should be an essential part of further crop genetic improvement.  相似文献   

9.
10.
Cellular senescence affects the efficacy of mesenchymal stem cells(MSCs)-mediated tissue regeneration. Insulin-like growth factor binding proteins-7(IGFBP7), as a member of the IGF family, is associated with osteogenic differentiation and the senescence of MSCs, but its exact function and mechanism remain unclear. We found IGFBP7 promoted the osteogenic differentiation and prevented the senescence of dental pulp-derived MSCs(DPSCs), as observed in the gain-of-function and lossof-function analyse...  相似文献   

11.
HuR(ELAV11(embryonic lethal,abnormal vision)-like 1),a ubiquitously expressed member of the ELAV-like RNA-binding protein family,has been shown to regulate the stability and translation of mRNAs that encode factors regulating cellular senescence,thereby impacting on aging.In this review,we discuss the current knowledge of HuR’s role in vascular cell senescence and vascular aging.  相似文献   

12.
Plant senescence plays diverse important roles in development and environmental responses.However,the molecular basis of plant senescence is remained largely unknown.A rice spontaneous mutant with the character of early senescence and male sterility (sms) was found in the breeding line NT10-748.In order to identify the gene SMS1 and the underlying mechanism,we preliminarily analyzed physiological and biochemical phenotypes of the mutant.The mutant contained lower chlorophyll content compared with the wild type control and was severe male sterile with lower pollen viability.Genetic analysis showed that the mutant was controlled by a single recessive gene.By the map-based cloning approach,we fine-mapped SMS1 to a 67 kb region between the markers Z3-4 and Z1-1 on chromosome 8 using 1,074 F2 recessive plants derived from the cross between the mutant sms1 (japonica) × Zhenshan 97 (indica),where no known gene involved in senescence or male sterility has been identified.Therefore the SMS1 gene will be a novel gene that regulates the two developmental processes.The further cloning and functional analysis of the SMS1 gene is under way.  相似文献   

13.
Dear Editor,Over a half-century ago,Dr.Leonard Hayflick described the phenotype of a finite lifespan for human fibroblasts being passaged in in vitro cell culture(Hayflick et al.,1961),a phenomenon today known as replicative cellular senescence.Cellular senescence has been defined as a state in which cells lose their potential to divide and are permanently arrested in either the G1,or arguably the G2 stage of the cell cycle(Mao et al.,2012).In addition to replicative cellular senescenee—which is induced by large amounts of DNA damage at telomeres due to loss of the specialized T-loop structure—xogenous sublethal stresses such as ionizing radiati on,genotoxic chemicals or hyper-activated on cogenes may also trigger a similar form of senescence,stress induced premature cellular senescenee(SIPS).  相似文献   

14.
15.
In order to explore the genetics of dark-induced senescence in winter wheat(Triticum aestivum L.),a quantitative trait loci(QTL)analysis was carried out in a doubled haploid population developed from a cross between the varieties Hanxuan 10(HX)and Lumai 14(LM).The senescence parameters chlorophyll content(Chl a+b,Chl a,and Chl b),original fluorescence(Fo),maximum fluorescence level(Fm),maximum photochemical efficiency(Fv/Fm),and ratio of variable fluorescence to original fluorescence(Fv/Fo)were evaluated in the second leaf of whole three-leaf seedlings subjected to 7 d of darkness.A total of 43 QTLs were identified that were associated with dark-induced senescence using composite interval mapping.These QTLs were mapped to 20 loci distributed on 11 chromosomes:1B,1D,2A,2B,3B,3D,5D,6A,6B,7A,and 7B.The phenotypic variation explained by each QTL ranged from 7.5% to 19.4%.Eleven loci coincided with two or more of the analyzed parameters.In addition,14 loci co-located or were linked with previously reported QTLs regulating flag leaf senescence,tolerance to high light stress,and grain protein content(Gpc),separately.  相似文献   

16.
The present study is aimed to investigate the mechanism of the biochemical genetic in shortseasoned cotton (Gossypium hirsutum L.) (SSC). Ten cultivars from two types of SSC were selected, five SSC with no premature senescence crossed with five SSC with premature senescence. The parents, F1, and F2 from the reciprocal crosses were field tested in replication in 2001 and 2002. The results indicated that the activities of protective enzymes of the antioxidant system, such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), were higher in the early maturing SSC with premature senescence compared with activities in the SSC parental cultivars that showed premature senescence, whereas the malondialdehyde (MDA) content in former group was lower than that in latter group. Various genetic variances and heritabilities for these biochemical traits and auxin (IAA), abscisic acid (ABA), and chlorophyll (Ch1 a b) contents were also estimated. Significant additive variance for CAT, POD, ABA, and IAA existed, whereas CAT specific activity and SOD activity were largely controlled by dominant effects. Both maternal and dominant variances played equally predominant roles in the specific activity of POD and SOD, MDA, and soluble portents. The relative contribution of the various genetic components to the phenotypic variation varied in the boll-setting period.  相似文献   

17.
Cellular senescence is an irreversible form of cell cycle arrest that provides a barrier to neoplastic transformation.The integrity of the Rb (Retinoblastoma) pathway is necessary for the formation of ...  相似文献   

18.
19.
P21Waf1/Cip1 is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21Waf1/cip1involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidencefor a link between p21Waf1/cip1 and cellular senescence. While in murine cells, the role of p21Waf1/Cip1is indefinite. We explored this issue using NIH3T3 cells with inducible p21Waf1/cip1 expression. Induc-tion of p21Waf1/Cip1 triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features,such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed thatp21Waf1/Cip1-transduced NIH3T3 cells expressedβ-galactosidase activity at pH 6.0, which is known to bea marker of senescence. Our results suggest that p21Waf1/cipx can also induce senescence-like changes inmurine cells.  相似文献   

20.
XCHEN  WEIZHANG 《Cell research》2002,12(3):229-233
P21^Waf1/Cip1 is a potent cyclin-dependent kinase inhibitor.As a downstream mediator of P53,P21^Waf1/Cip1 involves in cell cycle arrest,differentiation and apoptosis.Previous studies in human cells provided evidence for a link between P21^Waf1/Cip1 and cellular senescence.While in murine cells,the role of P21^Waf1/Cip1 is indefinite.We explored this issue using NIH3T3 cells with inducible P21^Waf1/Cip1 expression.Induc-tion of P21^Waf1/Cip1 triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features,such as enlarged and flattened cellular shape,specific to the senescence phenotype.We also showed that P21^Waf1/Cip1-transduced NIH3T3 cells expressed β-galactosidase activity at pH6.0 ,which is known to be a marker of senescence.Our results suggest that P21^Waf1/Cip1 can also induce senescence-like changes in murine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号