首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effect of two neo-clerodane diterpenoids, E-isolinaridial (EI) and its methylketone derivative (EIM), isolated from Linaria saxatilis var. glutinosa, on PLA2 and other enzyme activities involved in the inflammatory process was studied. Both compounds inhibited human synovial sPLA2 in a concentration-dependent manner with IC50 values of 0.20 and 0.49 microM, respectively, similar to scalaradial. Besides, these compounds decreased the cell-free 5-lipoxygenase activity and A23187-induced neutrophil LTB4 biosynthesis. Another function of human neutrophils, such as receptor-mediated degranulation, was also significantly reduced. In contrast, none of the compounds affected superoxide generation in leukocytes, or cyclooxygenase-1, cyclooxygenase-2 and inducible nitric oxide synthase activities in cell-free assays.  相似文献   

2.
Specialized methylketone-containing metabolites accumulate in certain plants, in particular wild tomatoes in which they serve as toxic compounds against chewing insects. In Solanum habrochaites f. glabratum, methylketone biosynthesis occurs in the plastids of glandular trichomes and begins with intermediates of de novo fatty acid synthesis. These fatty-acyl intermediates are converted via sequential reactions catalyzed by Methylketone Synthase2 (MKS2) and MKS1 to produce the n-1 methylketone. We report crystal structures of S. habrochaites MKS1, an atypical member of the α/β-hydrolase superfamily. Sequence comparisons revealed the MKS1 catalytic triad, Ala-His-Asn, as divergent to the traditional α/β-hydrolase triad, Ser-His-Asp. Determination of the MKS1 structure points to a novel enzymatic mechanism dependent upon residues Thr-18 and His-243, confirmed by biochemical assays. Structural analysis further reveals a tunnel leading from the active site consisting mostly of hydrophobic residues, an environment well suited for fatty-acyl chain binding. We confirmed the importance of this substrate binding mode by substituting several amino acids leading to an alteration in the acyl-chain length preference of MKS1. Furthermore, we employ structure-guided mutagenesis and functional assays to demonstrate that MKS1, unlike enzymes from this hydrolase superfamily, is not an efficient hydrolase but instead catalyzes the decarboxylation of 3-keto acids.  相似文献   

3.
Arylene bis(methylketone) compounds specifically block nuclear translocation of the HIV-1 pre-integration complex by forming Schiff-base adducts with contiguous lysines within nuclear localization signal.  相似文献   

4.
5.
High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst.  相似文献   

6.
7.
Despite recent progress in anti-human immunodeficiency virus (HIV) therapy, drug toxicity and emergence of drug-resistant isolates during long-term treatment of HIV-infected patients necessitate the search for new targets that can be used to develop novel antiviral agents. One such target is the process of nuclear translocation of the HIV preintegration complex. Previously we described a class of arylene bis(methylketone) compounds that inhibit HIV-1 nuclear import by targeting the nuclear localization signal (NLS) in the matrix protein (MA). Here we report a different class of MA NLS-targeting compounds that was selected using computer-assisted drug design. The leading compound from this group, ITI-367, showed potent anti-HIV activity in cultures of T lymphocytes and macrophages and also inhibited HIV-1 replication in ex vivo cultured lymphoid tissue. The virus carrying inactivating mutations in MA NLS was resistant to ITI-367. Analysis by real-time PCR demonstrated that the compound specifically inhibited nuclear import of viral DNA, measured by two-long terminal repeat circle formation. Evidence of the existence of this mechanism was provided by immunofluorescent microscopy, using fluorescently labeled HIV-1, which demonstrated retention of the viral DNA in the cytoplasm of drug-treated macrophages. Compounds inhibiting HIV-1 nuclear import may be attractive candidates for further development.  相似文献   

8.
Caspases are cysteine proteases involved in the signalling cascades of programmed cell death in which caspase-3 plays a central role, since it propagates death signals from intrinsic and extrinsic stimuli to downstream targets. The atomic resolution (1.06 Angstroms) crystal structure of the caspase-3 DEVD-cmk complex reveals the structural basis for substrate selectivity in the S4 pocket. A low-barrier hydrogen bond is observed between the side-chains of the P4 inhibitor aspartic acid and Asp179 of the N-terminal tail of the symmetry related p12 subunit. Site-directed mutagenesis of Asp179 confirmed the significance of this residue in substrate recognition. In the 1.06 Angstroms crystal structure, a radiation damage induced rearrangement of the inhibitor methylketone moiety was observed. The carbon atom that in a substrate would represent the scissile peptide bond carbonyl carbon clearly shows a tetrahedral coordination and resembles the postulated tetrahedral intermediate of the acylation reaction.  相似文献   

9.
Seasonal changes in peel carotenoids were investigated in Shamoutioranges on and off the tree. Generally the pattern of changes in carotenoids during the colourtransition of the peel from green to orange (colour break) wassimilar in attached fruit, in fruit detached when still greenand stored under normal conditions at 20°C, and in fruitundergoing de-greening by ethylene. There was a gradual disintegrationof chloroplasts, as shown by the disappearance of chlorophylls.Total carotenoids reached a minimum level and subsequently beganto accumulate. At this point, there was a hypsochromic shiftof 6–8 nm in the absorption spectrum of total carotenoidsindicating not only the completion of the conversion of chloroplaststo chromoplasts but also the appearance of carotenoids of adifferent type. The main changes were the disappearance of ß-carotene,lutein, and neoxanthin, and the appearance of phytofluene, isomersof violaxanthin, various other epoxides and pink apo-carotenals,and methylketone carotenoids. Phytofluene was found to reachrelatively higher concentrations in stored fruit. The observed changes in the composition and amount of carotenoidsappear to characterize the transformation of chloroplasts intochromoplasts in both attached and detached green fruit.  相似文献   

10.
During submerged culture in the presence of glucose and glutamate, the filamentous fungus Monascus ruber produces water-soluble red pigments together with citrinin, a mycotoxin with nephrotoxic and hepatoxic effects on animals. Analysis of the (13)C-pigment molecules from mycelia cultivated with [1-(13)C]-, [2-(13)C]-, or [1, 2-(13)C]acetate by (13)C nuclear magnetic resonance indicated that the biosynthesis of the red pigments used both the polyketide pathway, to generate the chromophore structure, and the fatty acid synthesis pathway, to produce a medium-chain fatty acid (octanoic acid) which was then bound to the chromophore by a trans-esterification reaction. Hence, to enhance pigment production, we tried to short-circuit the de novo synthesis of medium-chain fatty acids by adding them to the culture broth. Of fatty acids with carbon chains ranging from 6 to 18 carbon atoms, only octanoic acid showed a 30 to 50% stimulation of red pigment production, by a mechanism which, in contrast to expectation, did not involve its direct trans-esterification on the chromophore backbone. However, the medium- and long-chain fatty acids tested were readily assimilated by the fungus, and in the case of fatty acids ranging from 8 to 12 carbon atoms, 30 to 40% of their initial amount transiently accumulated in the growth medium in the form of the corresponding methylketone 1 carbon unit shorter. Very interestingly, these fatty acids or their corresponding methylketones caused a strong reduction in, or even a complete inhibition of, citrinin production by M. ruber when they were added to the medium. Several data indicated that this effect could be due to the degradation of the newly synthesized citrinin (or an intermediate in the citrinin pathway) by hydrogen peroxide resulting from peroxisome proliferation induced by medium-chain fatty acids or methylketones.  相似文献   

11.
A method utilising solid-phase extraction followed by high-performance liquid chromatography has been developed to quantify novel arylene bis(methylketone) chemotherapeutics present in biological samples. The samples are extracted over cyanopropylsilane solid-phase extraction cartridges using 10 mM heptanesulfonate-10 mM tetramethylammonium chloride-4.2 mM H3PO4-95% CH3CN as the eluent. Analytical chromatography utilises a diisopropyl-C8 reversed-phase column and a 7.5–45% CH3CN gradient in 10 mM heptanesulfonate-10 mM tetramethylammonium chloride-4.2 mM H3PO4-H2O. Detection was by ultraviolet spectrophotometry at 300 or 240 nm. The linear response of the assay was found to extend from at least 100 μg/ml down to 97.66 ng/ml for a 100 μl injection. The assay system was utilised to determine the plasma kinetics of the compounds in mice, where all the drugs were found to display rapid absorption and elimination following intraperitoneal dosing. In vitro and in vivo studies of metabolism demonstrated that each of the compounds produced several metabolites, and that this conversion could be extensive in vivo.  相似文献   

12.
Protease inhibitors were used to test the hypothesis that caspases and other proteases were active during apoptosis in cultured porcine granulosa cells. Cells isolated from 3 to 6 mm follicles were cultured for 24 h in Dulbecco's modified Eagles medium: Hams F12 (1:11 containing 1% fetal bovine serum. Final inhibitor concentrations, added in 10 microL of dimethylsulfoxide, were 0, 1, 5, 25 and 125 microM. Cells with compromised plasma membrane integrity, identified by uptake ethidium homodimer, increased during culture in the absence of inhibitors from 37% to 43%. Apoptotic (A0) cells, identified by DNA fluorescence flow cytometry, increased (P < 0.05) from 1.7% to 29%. The serine protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) at 125 microM was lethal increasing (P < 0.05) cells with compromised membranes to 92%. In response to TPCK, A0 cells decreased from 55% to 1.2%; progesterone and estradiol production were decreased by 94% and 98%, respectively. The general caspase inhibitor, benzyloxycarbonyl-valinyl-alaninyl-aspartyl fluoro methylketone, decreased (P < 0.05) A0 cells linearly from 33% to 3 % between 0 and 125 microM without significant effect on steroidogenesis or on the percentage of cells with compromised plasma membranes. Other inhibitors only had a marginal effect on apoptosis; concentrations of > or = 1 microM decreased (P < 0.05) A0 cells from 29% to 18% to 21% and had no significant effect on membrane integrity or steroid production. We conclude that caspases are associated with apoptosis in cultured porcine granulosa cells. Death induced by TPCK was through a non-apoptotic mechanism.  相似文献   

13.
14.
During submerged culture in the presence of glucose and glutamate, the filamentous fungus Monascus ruber produces water-soluble red pigments together with citrinin, a mycotoxin with nephrotoxic and hepatoxic effects on animals. Analysis of the 13C-pigment molecules from mycelia cultivated with [1-13C]-, [2-13C]-, or [1,2-13C]acetate by 13C nuclear magnetic resonance indicated that the biosynthesis of the red pigments used both the polyketide pathway, to generate the chromophore structure, and the fatty acid synthesis pathway, to produce a medium-chain fatty acid (octanoic acid) which was then bound to the chromophore by a trans-esterification reaction. Hence, to enhance pigment production, we tried to short-circuit the de novo synthesis of medium-chain fatty acids by adding them to the culture broth. Of fatty acids with carbon chains ranging from 6 to 18 carbon atoms, only octanoic acid showed a 30 to 50% stimulation of red pigment production, by a mechanism which, in contrast to expectation, did not involve its direct trans-esterification on the chromophore backbone. However, the medium- and long-chain fatty acids tested were readily assimilated by the fungus, and in the case of fatty acids ranging from 8 to 12 carbon atoms, 30 to 40% of their initial amount transiently accumulated in the growth medium in the form of the corresponding methylketone 1 carbon unit shorter. Very interestingly, these fatty acids or their corresponding methylketones caused a strong reduction in, or even a complete inhibition of, citrinin production by M. ruber when they were added to the medium. Several data indicated that this effect could be due to the degradation of the newly synthesized citrinin (or an intermediate in the citrinin pathway) by hydrogen peroxide resulting from peroxisome proliferation induced by medium-chain fatty acids or methylketones.  相似文献   

15.
Cell suspensions of methane-utilizing bacteria grown on methane oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding methylketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). The product methylketones accumulated extracellularly. The rate of production of methylketones varied with the organism used for oxidation; however, the average rate of acetone, 2-butanone, 2-pentanone, and 2-hexanone production was 1.2, 1.0, 0.15, and 0.025 μmol/h per 5.0 mg of protein in cell suspensions. Primary alcohols and aldehydes were also detected in low amounts as products of n-alkane (propane and butane) oxidation, but were rapidly metabolized further by cell suspensions. The optimal conditions for in vivo methylketone formation from n-alkanes were compared in Methylococcus capsulatus (Texas strain), Methylosinus sp. (CRL-15), and Methylobacterium sp. (CRL-26). The rate of acetone and 2-butanone production was linear for the first 60 min of incubation and directly increased with cell concentration up to 10 mg of protein per ml for all three cultures tested. The optimal temperatures for the production of acetone and 2-butanone were 35°C for Methylosinus trichosporium sp. (CRL-15) and Methylobacterium sp. (CRL-26) and 40°C for Methylcoccus capsulatus (Texas). Metal-chelating agents inhibited the production of methylketones, suggesting the involvement of a metal-containing enzymatic system in the oxidation of n-alkanes to the corresponding methylketones. The soluble crude extracts derived from methane-utilizing bacteria contained an oxidized nicotinamide adenine dinucleotide-dependent dehydrogenase which catalyzed the oxidation of secondary alcohols.  相似文献   

16.
Glycerol can be oxidized to formaldehyde by rat liver microsomes and by cytochrome P450. The ability of other alcohols to be oxidized to formaldehyde was determined to evaluate the structural determinants of the alcohol which eventually lead to this production of formaldehyde. Monohydroxylated alcohols such as 1- or 2-propanol did not produce formaldehyde when incubated with NADPH and microsomes. Geminal diols such as 1,3-propanediol, 1,3-butanediol, or 1,4-butanediol also did not yield formaldehyde. However, vicinal diols such as 1,2-propanediol or 1,2-butanediol produced formaldehyde. With 1,2-propanediol, the residual two-carbon fragment was found to be acetaldehyde, while with 1,2-butanediol, the residual three-carbon fragment was propionaldehyde. Oxidation of 1,2-propanediol to formaldehyde plus acetaldehyde involved interaction with an oxidant derived from H2O2 plus nonheme iron, since production of the two aldehydic products was completely prevented by catalase or glutathione plus glutathione peroxidase and by chelators such as desferrioxamine or EDTA. The oxidant was not superoxide or hydroxyl radical. Product formation was fivefold lower when NADH replaced NADPH, and was inhibited by substrates, ligands, and inhibitors of cytochrome P450. A charged glycol such as alpha-glycerophosphate (but not the geminal beta-glycerophosphate) was readily oxidized to formaldehyde, suggesting that interaction of the glycol with the oxidant was occurring in solution and not in a hydrophobic environment. These results indicate that the carbon-carbon bond between 1,2-glycols can be cleaved by an oxidant derived from microsomal generated H2O2 and reduction of non-heme iron, with the subsequent production of formaldehyde plus an aldehyde with one less carbon than the initial glycol substrate.  相似文献   

17.
By using electromobility shift assay (EMSA), we have identified a protein able to recognize the DNA only if it was previously reacted with minor groove binders. This protein binds with very high affinity AT containing DNA treated with minor groove binders such as distamycin A, Hoechst 33258 and 33342, CC-1065 and ethidium bromide minor groove intercalator, but not with major groove binders such as quinacrine mustard, cisplatin or melphalan, or with topoisomerase I inhibitor camptothecin or topoisomerase II inhibitor doxorubicin. This protein was found to be present in different extracts of human, murine and hamster cells, with the human protein which appears to have a molecular weight slightly lower than that of the other species. This protein was found to be expressed both in cancer and normal tissues. By using molecular ultrafiltration techniques as well as southwestern analysis it was estimated that the apparent molecular weight is close to 100 kDa. We can exclude an identity between this protein and other proteins, with a similar molecular weight previously reported to be involved in DNA damage recognition/repair, such as topoisomerase I, mismatch repair activities such as the prokaryotic MutS protein and its human homologue hMSH2 or proteins of the nucleotide excision repair system such as ERCC1, -2, -3 and -4.  相似文献   

18.
Topical application of TPA to a murine ear induced an edema that was accompanied by eicosanoid biosynthesis and an early enhancement of prostaglandin H synthase 2 (PGHS-2) expression. PGHS-2 induction may be correlated with the time-course of TPA-induced edema formation. Treatment with drugs that inhibit AA mobilization such as dexamethasone or manoalide or inhibitors of leukotriene formation such as zileuton or baicalein, reduced TPA-induced edema development and PGHS-2 levels. On the other hand, arachidonic acid (AA) application on the murine ear induced rapid expression of PGHS-2. This effect was not reproduced by other fatty acids such as oleic, linoleic, eicosatetraynoic or eicosapentaenoic acids. PGHS-2 expression induced by AA application was independent of PGHS and lipoxygenase metabolite synthesis. However, topical application of PGE2 on skin induced PGHS-2 overexpression. This study suggests that AA release and/or subsequent metabolism by PGHS may be involved in the induction of PGHS-2 expression in murine TPA- and AA-induced ear oedema.  相似文献   

19.
20.
A fungal alkaline protease of Scopulariopsis spp. was purified to homogeneity with a recovery of 32.2% and 138.1 U/mg specific activity on lectin-agarose column. The apparent molecular mass was 15 ± 1 kD by sodium dodecyl sulfate polyacryalamide gel electrophoresis (SDS-PAGE). It was a homogenous monomeric glycoprotein as shown by a single band and confirmed by native PAGE and gelatin zymography. The enzyme was active and stable over pH range 8.0–12.0 with optimum activity at pH 9.0. The maximum activity was recorded at 50°C and remained unaltered at 50°C for 24 hr. The enzyme was stimulated by Co2+ and Mn2+ at 10 mM but was unaffected by Ba2+, Mg2+, Cu2+, Na+, K+, and Fe2+. Ca2+ and Fe3+ moderately reduced the activity (~18%); however, a reduction of about 40% was seen for Zn2+ and Hg2+. The enzyme activity was completely inhibited by 5 mM phenylmethylsulfonyl fluoride (PMSF) and partially by N-bromosuccinimide (NBS) and tocylchloride methylketone (TLCK). The serine, tryptophan, and histidine may therefore be at or near the active site of the enzyme. The protease was more active against gelatin compared to casein, fibrinogen, egg albumin, and bovine serum albumin (BSA). With casein as substrate, Km and Vmax were 4.3 mg/mL and 15.9 U/mL, respectively. An activation was observed with sodium dodecyl sulfate (SDS), Tween-80, and Triton X-100 at 2% (v/v); however, H2O2 and NaClO did not affect the protease activity. Storage stability was better for all the temperatures tested (?20, 4, and 28 ± 2°C) with a retention of more than 85% of initial activity after 40 days. The protease retained more than 50% activity after 24 hr of incubation at 28, 60, and 90°C in the presence (0.7%, w/v) of commercial enzymatic and nonenzymatic detergents. The Super Wheel–enzyme solution was able to completely remove blood staining, differing from the detergent solution alone. The stability at alkaline pH and high temperatures, broad substrate specificity, stability in the presence of surfactants and oxidizing and bleaching agents, and excellent compatibility with detergents clearly suggested the use of the enzyme in detergent formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号