首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.  相似文献   

3.
We study a problem of identification of the parameters for a deterministic epidemic model of the Kermack-McKendrick type. Particular emphasis is put on the analysis of the conditions of numerical stability of the method of integration used to calculate the solutions of the system of differential equations which describe the model. The numerical method can be regarded as a discrete model which reproduces the basic qualitative properties of the continuous model, which are positivity of the solutions, points of equilibrium, and the “threshold theorem.” This allows us to identify the parameters with good reliability, by means of an iterative procedure to minimize the functional which is the measure of discrepancy between the data observed and the data obtained from the discrete model. The initial estimate of the parameters is obtained by a direct method applied to the discretized system of equations.  相似文献   

4.
5.
Stochastic simulations on a model of circadian rhythm generation   总被引:1,自引:0,他引:1  
Miura S  Shimokawa T  Nomura T 《Bio Systems》2008,93(1-2):133-140
Biological phenomena are often modeled by differential equations, where states of a model system are described by continuous real values. When we consider concentrations of molecules as dynamical variables for a set of biochemical reactions, we implicitly assume that numbers of the molecules are large enough so that their changes can be regarded as continuous and they are described deterministically. However, for a system with small numbers of molecules, changes in their numbers are apparently discrete and molecular noises become significant. In such cases, models with deterministic differential equations may be inappropriate, and the reactions must be described by stochastic equations. In this study, we focus a clock gene expression for a circadian rhythm generation, which is known as a system involving small numbers of molecules. Thus it is appropriate for the system to be modeled by stochastic equations and analyzed by methodologies of stochastic simulations. The interlocked feedback model proposed by Ueda et al. as a set of deterministic ordinary differential equations provides a basis of our analyses. We apply two stochastic simulation methods, namely Gillespie's direct method and the stochastic differential equation method also by Gillespie, to the interlocked feedback model. To this end, we first reformulated the original differential equations back to elementary chemical reactions. With those reactions, we simulate and analyze the dynamics of the model using two methods in order to compare them with the dynamics obtained from the original deterministic model and to characterize dynamics how they depend on the simulation methodologies.  相似文献   

6.
Hybrid simulation of cellular behavior   总被引:4,自引:0,他引:4  
MOTIVATION: To be valuable to biological or biomedical research, in silico methods must be scaled to complex pathways and large numbers of interacting molecular species. The correct method for performing such simulations, discrete event simulation by Monte Carlo generation, is computationally costly for large complex systems. Approximation of molecular behavior by continuous models fails to capture stochastic behavior that is essential to many biological phenomena. RESULTS: We present a novel approach to building hybrid simulations in which some processes are simulated discretely, while other processes are handled in a continuous simulation by differential equations. This approach preserves the stochastic behavior of cellular pathways, yet enables scaling to large populations of molecules. We present an algorithm for synchronizing data in a hybrid simulation and discuss the trade-offs in such simulation. We have implemented the hybrid simulation algorithm and have validated it by simulating the statistical behavior of the well-known lambda phage switch. Hybrid simulation provides a new method for exploring the sources and nature of stochastic behavior in cells.  相似文献   

7.
8.
研究时标上一捕食二食饵系统.运用时标上Gaines和Mawhin的连续拓扑度定理,得到了系统存在周期解的新的充分条件.其研究方法可以广泛地运用来研究微分或者差分方程的周期解存在性问题.  相似文献   

9.
Two mathematical models are presented which describe progress of disease, caused by an unspecialised pathogen, in pure and mixed stands of cereal cultivars. One is a simple, discrete model utilising the parameters infection frequency (lesions/spore) and sporulation rate (spores/lesion/event) on each cultivar. The model predicts that, in most circumstances, the amount of disease in mixtures will be equal to or less than the arithmetic mean of the component pure stands. An increase in disease is only predicted in situations where the ranking of cultivars with respect to infection frequency and sporulation rate is opposed. In the other model differential equations are proposed. Solutions of these equations indicate that disease amelioration can usually be expected in such mixtures, confirming the conclusions of the discrete model and that disease levels will deviate around the geometric, rather than arithmetic, mean of the pure stands. However the advantages of this model lie in wider generality and conceptual, rather than practical, utility.  相似文献   

10.
We consider two numerical methods for the solution of a physiologically structured population (PSP) model with multiple life stages and discrete event reproduction. The model describes the dynamic behaviour of a predator-prey system consisting of rotifers predating on algae. The nitrate limited algal prey population is modelled unstructured and described by an ordinary differential equation (ODE). The formulation of the rotifer dynamics is based on a simple physiological model for their two life stages, the egg and the adult stage. An egg is produced when an energy buffer reaches a threshold value. The governing equations are coupled partial differential equations (PDE) with initial and boundary conditions. The population models together with the equation for the dynamics of the nutrient result in a chemostat model. Experimental data are used to estimate the model parameters. The results obtained with the explicit finite difference (FD) technique compare well with those of the Escalator Boxcar Train (EBT) method. This justifies the use of the fast FD method for the parameter estimation, a procedure which involves repeated solution of the model equations.  相似文献   

11.
12.
This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand–receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular.  相似文献   

13.
Continuous and discrete mathematical models of tumor-induced angiogenesis   总被引:24,自引:0,他引:24  
Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a process whereby capillary sprouts are formed in response to externally supplied chemical stimuli. The sprouts then grow and develop, driven initially by endothelial-cell migration, and organize themselves into a dendritic structure. Subsequent cell proliferation near the sprout tip permits further extension of the capillary and ultimately completes the process. Angiogenesis occurs during embryogenesis, wound healing, arthritis and during the growth of solid tumors. In this paper we present both continuous and discrete mathematical models which describe the formation of the capillary sprout network in response to chemical stimuli (tumor angiogenic factors, TAF) supplied by a solid tumor. The models also take into account essential endothelial cell-extracellular matrix interactions via the inclusion of the matrix macromolecule fibronectin. The continuous model consists of a system of nonlinear partial differential equations describing the initial migratory response of endothelial cells to the TAF and the fibronectin. Numerical simulations of the system, using parameter values based on experimental data, are presented and compared qualitatively with in vivo experiments. We then use a discretized form of the partial differential equations to develop a biased random-walk model which enables us to track individual endothelial cells at the sprout tips and incorporate anastomosis, mitosis and branching explicitly into the model. The theoretical capillary networks generated by computer simulations of the discrete model are compared with the morphology of capillary networks observed in in vivo experiments.  相似文献   

14.
MOTIVATION: The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. RESULTS: In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. AVAILABILITY: Software and benchmark models used for this publication can be made available upon request from the authors.  相似文献   

15.
Asymptotic relationships between a class of continuous partial differential equation population models and a class of discrete matrix equations are derived for iteroparous populations. First, the governing equations are presented for the dynamics of an individual with juvenile and adult life stages. The organisms reproduce after maturation, as determined by the juvenile period, and at specific equidistant ages, which are determined by the iteroparous reproductive period. A discrete population matrix model is constructed that utilizes the reproductive information and a density-dependent mortality function. Mortality in the period between two reproductive events is assumed to be a continuous process where the death rate for the adults is a function of the number of adults and environmental conditions. The asymptotic dynamic behaviour of the discrete population model is related to the steady-state solution of the continuous-time formulation. Conclusions include that there can be a lack of convergence to the steady-state age distribution in discrete event reproduction models. The iteroparous vital ratio (the ratio between the maximal age and the reproductive period) is fundamental to determining this convergence. When the vital ratio is rational, an equivalent discrete-time model for the population can be derived whose asymptotic dynamics are periodic and when there are a finite number of founder cohorts, the number of cohorts remains finite. When the ratio is an irrational number, effectively there is convergence to the steady-state age distribution. With a finite number of founder cohorts, the number of cohorts becomes countably infinite. The matrix model is useful to clarify numerical results for population models with continuous densities as well as delta measure age distribution. The applicability in ecotoxicology of the population matrix model formulation for iteroparous populations is discussed.  相似文献   

16.
In this paper we study a method for the identification of the unknown parameter of the periodic function and also the first component of the state vector, in a mathematical model which describes the evolution of some diseases with an oro-fecal transmission.To solve the identification problem we use a numerical method to integrate the differential equations system, which reproduces the stability properties of the above mentioned continuous system.The numerical methods which we propose can be applied also to a spatial semi discretization of the reaction-diffusion model which is a diffusive generalization of the system that we consider in this paper.Finally, through an analysis on both the continuous and the discrete system we also obtain a necessary condition on the experimental data in order that a periodic trajectory of the system exists.Work supported by: Progetto Finalizzato Controllo Malattie da Infezione-CNR and by Ministero Pubblica Istruzione  相似文献   

17.
The time required for gene frequency change under natural selection in a deterministic model of gene-culture coevolution is investigated. A discrete generations model is formulated, and its continuous time approximation is derived. In passing to the continuous time limit, it is assumed that the frequency of the culturally transmitted trait does not change under oblique (between generations) transmission. The system of ordinary differential equations thus obtained are solved, and the dependence on the parameters of horizontal (within generations) transmission and natural selection is examined. The time required is found to be substantially longer when the determination of a phenotypic difference subject to natural selection is partly cultural rather than completely genetic. The predictions are relevant to the possibility of the coevolution of lactose absorbers and milk drinkers in some human populations. Alternative hypotheses are briefly discussed in the light of the theoretical results.  相似文献   

18.
研究了与生物资源管理相关的食饵具脉冲扰动与成年捕食者具连续收获的阶段结构时滞捕食-食饵模型.利用离散动力系统的频闪映射和脉冲时滞微分方程理论,得到了捕食者灭绝周期解的全局吸引和系统持久的充分条件,也证明了系统的所有解的一致完全有界.结论为现实的可再生生物资源管理提供了可靠的策略依据.  相似文献   

19.
Multiple imputation (MI) has emerged in the last two decades as a frequently used approach in dealing with incomplete data. Gaussian and log‐linear imputation models are fairly straightforward to implement for continuous and discrete data, respectively. However, in missing data settings that include a mix of continuous and discrete variables, the lack of flexible models for the joint distribution of different types of variables can make the specification of the imputation model a daunting task. The widespread availability of software packages that are capable of carrying out MI under the assumption of joint multivariate normality allows applied researchers to address this complication pragmatically by treating the discrete variables as continuous for imputation purposes and subsequently rounding the imputed values to the nearest observed category. In this article, we compare several rounding rules for binary variables based on simulated longitudinal data sets that have been used to illustrate other missing‐data techniques. Using a combination of conditional and marginal data generation mechanisms and imputation models, we study the statistical properties of multiple‐imputation‐based estimates for various population quantities under different rounding rules from bias and coverage standpoints. We conclude that a good rule should be driven by borrowing information from other variables in the system rather than relying on the marginal characteristics and should be relatively insensitive to imputation model specifications that may potentially be incompatible with the observed data. We also urge researchers to consider the applied context and specific nature of the problem, to avoid uncritical and possibly inappropriate use of rounding in imputation models.  相似文献   

20.
Sveshnikova  A. N.  Panteleev  M. A.  Dreval  A. V.  Shestakova  T. P.  Medvedev  O. S.  Dreval  O. A. 《Biophysics》2017,62(5):842-847

The aim of this paper is to construct a mathematical model that takes the main physiological parameters of blood-glucose regulation into account, in order to identify these parameters for an individual patient according to continuous glucose-monitoring data. The constructed mathematical model consists of six ordinary differential equations that describe the dynamics of changes in glucose concentrations, as well as insulin and anti-insulin factors in the blood. Estimation of the parameters of the equations was performed using an evolutionary programming method. The model predictions were fitted to the continuous glucosemonitoring data. As a result of the identification of the model parameters for two patients with type 1 diabetes mellitus, the estimated insulin secretion was close to zero and the estimated glucose utilization and insulin clearance were increased in comparison with the data for healthy donors. Here, we present a personalized model of the regulation of blood glucose, which can be used to predict the results of continuous glucose monitoring depending on modification of the prescribed glucose-lowering therapy. This approach can significantly reduce the number of iterations of the selection of medical hypoglycemic therapy and therefore increase the effectiveness of treatment according to glucose-monitoring data.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号