首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphenol oxidase (PPO) was immobilized in copolymers of thiophene functionalized menthyl monomer (MM) with pyrrole. Immobilization of enzyme was performed via entrapment in conducting copolymers during electrochemical polymerization of pyrrole. Maximum reaction rates, Michaelis-Menten constants and temperature, pH and operational stabilities of enzyme electrodes were investigated. Total amount of phenolic compounds in red wines of Turkey were analyzed by using these electrodes.  相似文献   

2.
Amperometric glucose biosensors have been developed based on entrapment on platinum (Pt) electrode using cyclic voltammetry technique in glucose oxidase (GOD) and pyrrole containing p-toluenesulfonic acid (pTSA) or sodium p-toluenesulfonate (NapTS) as supporting electrolyte solutions. Both of electrolyte solutions were suitable media for the formation and deposition of polypyrrole-GOD (PPy-GOD) layers on Pt substrate. Pt/PPy-GOD electrodes brought about in different morphological properties as well as different electrochemical and biochemical response. The highest responses obtained in pTSA and NapTS electrolytes were observed at pH of 4.5 and 7.0 for Pt/PPy-GOD electrodes, respectively. While linearity was observed between 0.0-1.0 mM glucose substrate for both electrodes, I(max) value of Pt/PPy-GOD(NapTS) electrode was approximately twice as high as that of Pt/PPy-GOD(pTSA) electrode as 25.4 and 14.2 microA, respectively. Five commercial drinks were tested with enzyme electrodes and compared with results obtained spectrophotometrically using glucose kit. Results revealed that Pt/PPy-GOD(NapTS) electrode exhibited better biosensor response.  相似文献   

3.
This work describes development and optimization of a generic method for the immobilization of enzymes in chemically synthesized gold polypyrrole (Au-PPy) nanocomposite and their application in amperometric biosensors. Three enzyme systems have been used as model examples: cytochrome c, glucose oxidase and polyphenol oxidase. The synthesis and deposition of the nanocomposite was first optimized onto a glassy carbon electrode (GCE) and then, the optimum procedure was used for enzyme immobilization and subsequent fabrication of glucose and phenol biosensors. The resulting nanostructured polymer strongly adheres to the surface of the GCE electrode, has uniform distribution and is very stable. The method has proved to be an effective way for stable enzyme attachment while the presence of gold nanoparticles provides enhanced electrochemical activity; it needs very small amounts of pyrrole and enzyme and the Au-PPy matrix avoids enzyme leaking. The preparation conditions, Michaelis-Menten kinetics and analytical performance characteristics of the two biosensors are discussed. Optimization of the experimental parameters was performed with regard to pyrrole concentration, enzyme amount, pH and operating potential. These biosensors resulted in rapid, simple, and accurate measurement of glucose and phenol with high sensitivities (1.089 mA/M glucose and 497.1 mA/M phenol), low detection limits (2 x 10(-6)M glucose and 3 x 10(-8)M phenol) and fast response times (less than 10s). The biosensors showed an excellent operational stability (at least 100 assays) and reproducibility (R.S.D. of 1.36%).  相似文献   

4.
Biotin was covalently coupled with alginate in an aqueous-phase reaction by means of carbodiimide-mediated activation chemistry to provide a biotin-alginate conjugate for subsequent use in biosensor applications. The synthetic procedure was optimized with respect to pH of the reaction medium (pH 6.0), the degree of uronic acid activation (20%), and the order of addition of the reagents. The biotin-alginate conjugate was characterized by titration with 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS), 4-hydroxyazobene-2'-carboxylic acid (HABA) and by an HPSEC-MALLS analytical method as well as by FTIR and 13C NMR spectroscopy. As a compromise between the need for a high percent of molar modification of the alginate, on one hand, and sufficient gelling capability, on the other hand, an optimal modification of 10-13% of biotin-alginate was used. The new biotin-alginate conjugate was used for the encapsulation of bioluminescent reporter cells into microspheres. A biosensor was prepared by conjugating these biotinylated alginate microspheres to the surface of a streptavidin-coated optical fiber, and the performance of the biosensor was demonstrated in the determination of the antibiotic, mitomycin C as a model toxin.  相似文献   

5.
New processes and actual trends in biotechnology   总被引:2,自引:0,他引:2  
Abstract: A survey of immobilization techniques with special emphasis on alginate entrapment and micro hollow spheres is presented. The advantages and disadvantages of immobilization are discussed. Industrial applications of immobilization are demonstrated, especially biosensors and production of acrylamide. The fundamentals of bioprocesses with reduced water content and application as well as process examples are presented.  相似文献   

6.
The effects of entrapment on nucleic acid content and microbial diversity of mixed cultures in biological municipal wastewater treatment were investigated. Deoxyribonucleic acid content increased 1.6-5.5 times more in alginate entrapped cells than in free and polyvinyl alcohol (PVA) entrapped cells. PVA entrapment resulted in 1.1- to 5.9-fold more increases in ribonucleic acid content compared to that experienced by free and alginate entrapped cells. Entrapment in carrageenan changed the bacterial community structure more than the alginate and PVA entrapments (35-80% versus 0-35%) as determined by single-strand conformation polymorphism analyses. The change in the bacterial community structure of alginate entrapped cells was less time dependent than that of PVA entrapped cells. This study enhances understandings on the physiology of entrapped cells and their community evolution in wastewater treatment environments.  相似文献   

7.
Glucose oxidase was immobilized in conducting copolymers of three different types of poly(methyl methacrylate-co-thienyl methacrylate). Immobilization of enzyme was carried out by the entrapment in conducting polymers during electrochemical polymerization of pyrrole on the copolymer electrodes. Maximum reaction rate, Michaelis-Menten constants, temperature, pH and operational stabilities were determined for immobilized enzyme. The amount of glucose in orange juices of Turkey was investigated by using enzyme electrodes.  相似文献   

8.
Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion-conjugation technique. As a result, the comparison of these three techniques showed the emulsion-conjugation technique to be a potentially effective and practical way to fabricate alginate/GOx microspheres for implantable glucose biosensor application.  相似文献   

9.
A method previously used in this laboratory for entrapment of tumor cells in alginate beads has been extended to provide a slow release delivery system for growth factors with known in vivo angiogenic activity. Protein growth factors were entrapped in alginate beads in amounts sufficient to cause incorporation of 3H-thymidine by COMMA-D cells in vitro, and in vivo neovascularization when injected subcutaneously into Balb/c mice. Entrapment of 125I-labelled growth factors showed that the amount of molecule entrapped in alginate beads may vary with the charge of the molecule. In vitro cell proliferation studies showed that entrapment in alginate beads may provide a slow-release system or a stabilizing environment for the protein. In some cases biological activity of the growth factor in solution was increased by the presence of control alginate beads. When alginate-entrapped growth factors were injected into Balb/c mice, induction of new blood vessels could be monitored qualitatively by macroscopic photography and assessed quantitatively by measuring the pooling of radiolabelled red blood cells at the experimental site. Subcutaneous injection of purified angiogenic factors not entrapped in alginate beads did not cause neovascularization. Diffusion of 125I-labelled growth factors from alginate beads in the animal showed that release in vivo may depend on the charge of the protein molecule. These results indicate that injection of purified molecules entrapped in alginate beads provides an effective localized and slow-release delivery of biologically active molecules. This delivery system may extend the time of effectiveness of biologically active molecules in vivo compared to direct injection without alginate entrapment. The method of entrapment and injection has potential for identifying active factors in tumor-induced angiogenesis and testing new compounds as modulators of neovascularization.  相似文献   

10.
Amperometric glucose biosensors have been developed based on entrapment on platinum (Pt) electrode using cyclic voltammetry technique in glucose oxidase (GOD) and pyrrole containing p-toluenesulfonic acid (pTSA) or sodium p-toluenesulfonate (NapTS) as supporting electrolyte solutions. Both of electrolyte solutions were suitable media for the formation and deposition of polypyrrole-GOD (PPy-GOD) layers on Pt substrate. Pt/PPy-GOD electrodes brought about in different morphological properties as well as different electrochemical and biochemical response. The highest responses obtained in pTSA and NapTS electrolytes were observed at pH of 4.5 and 7.0 for Pt/PPy-GOD electrodes, respectively. While linearity was observed between 0.0–1.0 mM glucose substrate for both electrodes, I max value of Pt/PPy-GODNapTS electrode was approximately twice as high as that of Pt/PPy-GODpTSA electrode as 25.4 and 14.2 μA, respectively. Five commercial drinks were tested with enzyme electrodes and compared with results obtained spectropho-tometrically using glucose kit. Results revealed that Pt/PPy-GODNapTS electrode exhibited better biosensor response.  相似文献   

11.
This article reports the characterization of the biochemical behavior of glucose oxidase entrapped in polypyrrole. The immobilization of glucose oxidase in a polypyrrole film was performed by entrapment during the electropolymerization of pyrrole at a platinum electrode poised at 0.65 V vs. SCE in aqueous solution in a one-compartment electrochemical cell. Thin films of polypyrrole (0.11 mum) were obtained and the entrapped enzyme obeyed Michaelis kinetics, indicating no diffusional constraints of the substrate. Our results indicate that the entrapped glucose oxidase is more resistant to denaturation conditions such as alkaline pH and temperature (50 and 60 degrees C) than the soluble form of the enzyme. The autoinactivation constant for the entrapped enzyme was also determined in presence of 0.25M of glucose and was 6.19 x 10(-4) min(-1), i.e., corresponding to a half-life value of 20 h. The results reported here show clearly that polypyrrole matrix has a strong stabilizing effect on the stucture and on the activity of glucose oxidase.  相似文献   

12.
Guo H  Ye C  He H  Chen Z  Hu J  Hu G  Li A 《Biosensors & bioelectronics》2012,33(1):204-210
Neodymium (Nd) substituted bismuth titanate (Bi(4-x)Nd(x)Ti(3)O(12), BNTO-x) nanoplates inlaid one another were prepared by sol-gel hydrothermal method, which was explored for protein immobilization and biosensor fabrication. Comparative experiments witnessed that Bi(3+) ions in bismuth titanate (Bi(4)Ti(3)O(12), BTO) were successfully substituted with Nd(3+) ions, and the electrochemical properties of the Hb-Chi-BNTO biosensors closely depended on the Nd(3+) ion content. With increasing the Nd(3+) doping content, the electrochemical performance of the Hb-Chi-BNTO-x biosensors showed regularly variable. Moreover, compared with the Hb-Chi-BTO and other Hb-Chi-BNTO-x biosensors, the Hb-Chi-BNTO-0.85 biosensor had more excellent electrochemical and electrocatalytic properties such as stronger redox peak currents (approximately three-fold), smaller peak-to-peak separation (50 mV), larger heterogeneous electron transfer rate (14.1 ± 3.8s(-1)), higher surface concentration of electroactive redox protein (about 8.16 × 10(-11)mol/cm(2)), and better reproducibility and stability. The Nd-depended electrochemical properties of the Hb-Chi-BNTO biosensors may open up a new idea for designing third-generation electrochemical biosensors, and the BNTO-0.85-based biosensor is also expected to find potential applications in many areas such as biomedical, food, and environmental detection.  相似文献   

13.
Aims: Pseudomonas fluorescens F113Rifpcb is a genetically engineered rhizosphere bacterium with the potential to degrade polychlorinated biphenyls (PCBs). F113Rifpcbgfp and F113L::1180gfp are biosensor strains capable of detecting PCB bioavailability and biodegradation. The aim of this paper is to evaluate the use of alginate beads as a storage, delivery and containment system for use of these strains in PCB contaminated soils. Methods and Results: The survival and release of Ps. fluorescens F113Rifpcb from alginate beads were evaluated. Two Ps. fluorescens F113‐based biosensor strains were encapsulated, and their ability to detect 3‐chlorobenzoate (3‐CBA) and 3‐chlorobiphenyl (3‐CBP) degradation in soil was assessed. After 250 days of storage, 100% recovery of viable F113Rifpcb cells was possible. Amendments to the alginate formulation allowed for the timed release of the inoculant. Encapsulation of the F113Rifpcb cells provided a more targeted approach for the inoculation of plants and resulted in lower inoculum populations in the bulk soil, which may reduce the risk of unintentional spread of these genetically modified micro‐organisms in the environment. Encapsulation of the biosensor strains in alginate beads did not interfere with their ability to detect either 3‐CBA or 3‐CBP degradation. In fact, detection of 3‐CBP degradation was enhanced in encapsulated biosensors. Conclusions: Alginate beads are an effective storage and delivery system for PCB degrading inocula and biosensors. Significance and Impact of the Study: Pseudomonas fluorescens F113Rifpcb and the F113 derivative PCB biosensor strains have excellent potential for detecting and bioremediation of PCB contaminated soils. The alginate bead delivery system could facilitate the application of these strains as biosensors.  相似文献   

14.
Catecholamine derivatives were synthesized with potential applications as coating antigens in biosensors or in the raising of specific antibodies. Thioether-bridged derivatives of the catecholamines dopamine, norepinephrine, and epinephrine that attach carboxylic acid functionalities directly to the aromatic ring via an easily incremented linker chain were synthesized by an electrochemical method. These derivatives were purified by convenient ion-exchange chromatography, exact positions of conjugation determined by NMR, and a dopamine derivative immobilized in situ in a BIAcore surface plasmon resonance (SPR) biosensor and its antibody binding studied in comparison with immobilization via the catecholamine primary amine. Binding of an antibody raised to an amine-conjugated protein conjugate showed clear distinction between conjugations at different positions on the catecholamine, illustrating the importance of rational conjugate design in immunosensing of the catecholamines.  相似文献   

15.
Alginate was evaluated as an immobilization matrix for enzyme-catalyzed reactions in organic solvents. In contrast to most hydrogels, calcium alginate was found to be stable in a range of organic solvents and to retain the enzyme inside the gel matrix. In hydrophobic solvents, the alginate gel (greater than 95% water) thus provided a stable, two-phase liquid system. The lipase from Candida cylindracea, after immobilization in alginate beads, catalysed esterification and transesterification in n-hexane under both batch and continuous-flow conditions. The operational stability of the lipase was markedly enhanced by alginate entrapment. In the esterification of butanoic acid with n-butanol, better results were obtained in the typical hydrophilic calcium alginate beads than in less hydrophilic matrices. The effects of substrate concentration, matrix area, and polarity of the substrate alcohols and of the organic solvent on the esterification activity were examined. The transesterification of octyl 2-bromopropanoate with ethanol was less efficient than that of ethyl 2-bromopropanoate with octanol. By using the hydrophilic alginate gel as an immobilization matrix in combination with a mobile hydrophobic phase, a two-phase liquid system was achieved with definite advantages for a continuous, enzyme-catalysed process.  相似文献   

16.
Immobilization of tyrosinase in polysiloxane/polypyrrole copolymer matrices   总被引:1,自引:0,他引:1  
Immobilization of tyrosinase in conducting copolymer matrices of pyrrole functionalized polydimethylsiloxane/polypyrrole (PDMS/PPy) was achieved by electrochemical polymerization. The polysiloxane/polypyrrole/tyrosinase electrode was constructed by the entrapment of enzyme in conducting matrices during electrochemical copolymerization. Maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) were investigated for immobilized enzyme. Enzyme electrodes were prepared in two different electrolyte/solvent systems. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate on the enzyme activity and film morphology were determined. Temperature and pH optimization, operational stability and shelf-life of enzyme electrodes were also examined. Phenolic contents of green and black tea were determined by using enzyme electrodes.  相似文献   

17.
An amperometric biosensor based on malate quinone oxidoreductase (MQO) was developed for monitoring of the malolactic fermentation of wines. Screen-printed electrodes coupled with appropriate mediators were used as transducers for this novel biosensor. MQO was immobilized by physical entrapment in a photo-cross-linkable poly(vinyl alcohol) polymer (PVA-SbQ) on the surface of the working electrode. Several electrochemical mediators were studied in order to lower the applied potential and minimise the matrix effects. Among them, 2,6-dichlorophenol indophenol (DPIP) and phenazine methosulfate (PMS) were chosen for further development. The working conditions (mediator concentration, applied potential and pH) were optimised for both DPIP and PMS. Detection limits for both types of biosensors were of 5 μM malic acid. Sensitivities obtained for the linear part of the calibration curve were 0.85 and 1.7 mA/M for the biosensors based on DPIP and PMS, respectively. Interferences due to non-specific oxidations were shown to be negligible when using PMS as mediator.  相似文献   

18.
A new functionalized pyrrole monomer, 3-pyrrolylacrylic acid (PAA) was synthesized. It was used to prepare a copolymer with pyrrole, poly(Py-co-PAA), which was investigated by reflective FT-IR, UV-vis spectroscopy and cyclic voltammetry. A label-free DNA sensor was prepared based on a poly(Py-co-PAA) film. Hybridization with complementary and non-complementary DNA targets was studied by electrochemical impedance spectroscopy. Results show a significant increase in the charge-transfer resistance upon addition of complementary target. The impedance spectra were analyzed by using a modified Randles and Ershler equivalent circuit model. The change in charge-transfer resistance that was used as an index of sensor response was found to be linear with logarithmic target concentration in the range of 2 x 10(-9) to 2 x 10(-7)M. The detection limit was 0.98 nM.  相似文献   

19.
A physical entrapment technique has been developed for the surface engineering of preformed alginate fibers. Surface engineering was carried out at room temperature in aqueous solutions without additional solvent, a catalyst/initiator, a chemical cross-linking agent, or a temperature increase. Entrapment of surface-modifying molecules was achieved by exposing the alginate fibers to a Na(+)-rich NaCl/CaCl2 mixture solution, which caused the formation of a moderate dissociation layer into which the modifier could diffuse within a few seconds. The surface dissociation was then reversed by the addition of a large excess of multivalent cations, which resulted in collapse of the interface and immobilization of the modifying species. Rhodamine-tagged poly(ethylene glycol)s of different molecular weights were used as model molecules to investigate the effect of process parameters on the entrapment efficiency. It was found that the entrapment efficiency as well as the distribution of the modifier within the alginate fibers was determined by several factors, including the NaCl/CaCl2 ratio in the preswelling solution, exposure time, and concentration and molecular weight of the modifiers. The morphology of the fibers was not significantly changed in terms of shape and size after the entrapment process. By this technique, poly(L-lysine) (PLL) coupled with cell adhesion peptide sequence GRGDS (PLL-GRGDS) was entrapped within alginate fibers, and it was demonstrated that the modification promoted the attachment of mouse 3T3 fibroblasts.  相似文献   

20.
Calcium alginate gel (CAG) beads were used to entrap the antioxidant astaxanthin-rich Xanthophyllomyces dendrorhous (ASX) by ionic gelation. ASX-CAG bead entrapment efficiency and release behavior, as influenced by alginate and CaCl2 concentration and hardening time, were investigated. The optimized bead preparation conditions that gave rise to an efficient ASX release pattern were 1.5% alginate, 50 mM CaCl2, and a 5 min hardening time. The antioxidant activity of non-encapsulated ASX was maintained for 4 days and then sharply decreased, whereas encapsulated ASX was maintained for 6 days. These results revealed that physical entrapment of ASX within CAG beads could be an effective technique for protecting the antioxidant activity of ASX from lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号