首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oberlé  I.  Camerino  G.  Kloepfer  C.  Moisan  J. P.  Grzeschik  K. H.  Hellkuhl  B.  Hors-Cayla  M. C.  Van Cong  N.  Weil  D.  Mandel  J. L. 《Human genetics》1986,72(1):43-49
Summary We have characterized 19 DNA fragments originating from the human X chromosome. Most of them have been isolated from an X chromosome genomic library (Davies et al. 1981) using a systematic screening procedure. These DNA probes have been used to search for restriction fragment length polymorphisms (RFLP). The frequency of restriction polymorphisms (1 per 350 bp analysed) was lower than expected from data obtained with autosomal fragments. The various probes have been mapped within 12 subchromosomal regions using a panel of human-rodent hybrid cell lines. The validity of the panel was established by hybridization experiments performed with 27 X-specific DNA probes, which yielded information on the relative position of translocation break-points on the X chromosome. The DNAs from the various hybrid lines are blotted onto a reusable support which allows one to quickly map any new X-specific DNA fragment. The probes already isolated should be of use to map unbalanced X chromosome aberrations or to characterize new somatic cell hybrid lines. The probes which detect RFLPs define new genetic markers which will help to construct a detailed linkage map of the human X chromosome, and might also serve for the diagnosis of carriers or prenatal diagnosis.  相似文献   

2.
The genomic subtraction method representational difference analysis (RDA) was used to identify male-specific restriction fragments in the dioecious plant Silene latifolia. Male-specific restriction fragments are linked to the male sex chromosome (the Y chromosome). Four RDA-derived male-specific restriction fragments were used to identify polymorphisms in a collection of X-ray-generated mutant plants with either hermaphroditic or asexual flowers. Some of the mutants have cytologically detectable deletions in the Y chromosome that were correlated with loss of male-specific restriction fragments. One RDA-derived probe detected a restriction fragment present in all mutants, indicating that each has retained Y chromosomal DNA. The other three probes detected genomic fragments that were linked in a region deleted in some hermaphroditic and some asexual mutants. Based on the mutant phenotypes and the correlation of cytologically visible deletions with loss of male-specific restriction fragments, these markers were assigned to positions on the Y chromosome close to the carpel suppression locus. This RDA mapping also revealed a Y-linked locus, not previously described, which is responsible for early stamen development.  相似文献   

3.
Four cloned unique sequences from the human Y chromosome, two of which are found only on the Y chromosome and two of which are on both the X and Y chromosomes, were hybridized to restriction enzyme-treated DNA samples of a male and a female chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and pig-tailed macaque (Macaca nemestrina); and a male orangutan (Pongo pygmaeus) and gibbon (Hylobates lar). One of the human Y-specific probes hybridized only to male DNA among the humans and great apes, and thus its Y linkage and sequence similarities are conserved. The other human Y-specific clone hybridized to male and female DNA from the humans, great apes, and gibbon, indicating its presence on the X chromosome or autosomes. Two human sequences present on both the X and Y chromosomes also demonstrated conservation as indicated by hybridization to genomic DNAs of distantly related species and by partial conservation of restriction enzyme sites. Although conservation of Y linkage can only be demonstrated for one of these four sequences, these results suggest that Y-chromosomal unique sequence genes do not diverge markedly more rapidly than unique sequences located on other chromosomes. However, this sequence conservation may in part be due to evolution while part of other chromosomes.  相似文献   

4.
Satellite DNA sequences were isolated from the water buffalo (Bubalus bubalis) after digestion with two restriction endonucleases, BamHI and StuI. These satellite DNAs of the water buffalo were classified into two types by sequence analysis: one had an approximately 1,400 bp tandem repeat unit with 79% similarity to the bovine satellite I DNA; the other had an approximately 700 bp tandem repeat unit with 81% similarity to the bovine satellite II DNA. The chromosomal distribution of the satellite DNAs were examined in the river-type and the swamp-type buffaloes with direct R-banding fluorescence in situ hybridization. Both the buffalo satellite DNAs were localized to the centromeric regions of all chromosomes in the two types of buffaloes. The hybridization signals with the buffalo satellite I DNA on the acrocentric autosomes and X chromosome were much stronger than that on the biarmed autosomes and Y chromosome, which corresponded to the distribution of C-band-positive centromeric heterochromatin. This centromere-specific satellite DNA also existed in the interstitial region of the long arm of chromosome 1 of the swamp-type buffalo, which was the junction of the telomere-centromere tandem fusion that divided the karyotype in the two types of buffaloes. The intensity of the hybridization signals with buffalo satellite II DNA was almost the same over all the chromosomes, including the Y chromosome, and no additional hybridization signal was found in noncentromeric sites.  相似文献   

5.
With a human myelin-basic-protein (MBP) cDNA used as a probe, the human MBP gene has been mapped to chromosome region 18q22-q23 by a combination of Southern hybridization to a panel of somatic-cell hybrid DNAs and in situ hybridization to metaphase chromosomes. Restriction-fragment-length polymorphisms (RFLPs) have also been identified with this probe in human DNA, by means of the restriction enzymes BamHI, PvuII, and PstI. In studies of informative families, the alleles of the BamHI and PvuII polymorphisms have been shown to segregate as Mendelian traits.  相似文献   

6.
A cloned repeated DNA sequence in human chromosome heteromorphisms   总被引:4,自引:0,他引:4  
A sequence derived by ECoRI restriction of human satellite DNA III has been cloned in lambda gt WES. The cloned DNA was used as a template for in vitro synthesis of cRNA, which was hybridized in situ to preparations of human metaphase chromosomes with a range of heterochromatic polymorphisms. Most of the hybridization was found on chromosome 1, and the amount of hybridization was related to the size of the C-band on this chromosome. Hybridization to other chromosomes was not related to the C-band size, although hybridization of total satellite DNA is proportional to C-band size. Total satellite DNAs contain a mixture of sequences, some of which are predominantly located on only one pair of chromosomes. Hybridization in situ is able to discriminate between such chromosome-specific sequences and the bulk of satellite DNA. Further analysis of satellite DNAs may identify sequences specific for every chromosome pair.  相似文献   

7.
A 1,161-bp EcoRI fragment from the 5' end of the cDNA coding for human factor XIIIa (gene symbol F13A) was used to identify RFLPs in human DNAs. Several different RFLPs were identified with 15 different restriction enzymes. Two RFLPs detected with the restriction enzyme BamHI and one multiallelic RFLP detected with BclI were used for further studies. Linkage relationships between these three polymorphisms and the HLA complex were studied in DNA samples from the 40 Centre d'Etude du Polymorphisme Humain families. Combining all of the data to form highly informative haplotypes, we found linkage to HLA with a maximum lod score of 11.44 at a recombination fraction of .25 for males and .35 for females. These three RFLPs at the FXIIIa locus provide a highly informative marker for the short arm of chromosome 6 with an observed heterozygosity of 91%. Using this marker and the HLA locus, one can confirm or exclude the assignment of gene loci to most of chromosome 6p.  相似文献   

8.
L C Amar  D Arnaud  J Cambrou  J L Guenet    P R Avner 《The EMBO journal》1985,4(13B):3695-3700
Two libraries enriched in murine X chromosome material have been constructed in the lambda vector NM 1149 from flow-sorted chromosomes. Inserts of unique genomic sequence DNA were purified and their X chromosome specificity characterised by hybridisation to a panel of somatic cell hybrid lines. Of the first five such X chromosome-specific probes characterised, all detect restriction fragment length polymorphisms (RFLPs) between inbred mouse laboratory strains such as C57BL/6 and BALB/c and the SPE/Pas mouse strain established from a wild Mus spretus mouse, when their DNAs are digested with the restriction enzyme TaqI. Taking advantage of these RFLPs, all five probes have been localised on the X chromosome using an interspecific backcross between the B6CBARI and SPE/Pas mouse strains segregating the X chromosome markers hypoxanthine phosphoribosyl transferase (Hprt) and Tabby (Ta). Three of the probes map to the region between the centromere and Hprt, and two distal to Ta. Since such X-specific sequence probes detect RFLPs between M. spretus and M. musculus domesticus DNAs with high frequency, a large panel of well localised probes should soon be available for studies of biological problems associated with the X chromosome which can best be approached using the murine species.  相似文献   

9.
Nine newly described single-copy and lowcopy-number genomic DNA sequences isolated from a flow-sorted human Y chromosome library were mapped to regions of the human Y chromosome and were hybridized to Southern blots of male and female great ape genomic DNAs (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). Eight of the nine sequences mapped to the euchromatic Y long arm (Yq) in humans, and the ninth mapped to the short arm or pericentromeric region. All nine of the newly identified sequences and two additional human Yq sequences hybridized to restriction fragments in male but not female genomic DNA from the great apes, indicating Y chromosome localization. Seven of these 11 human Yq sequences hybridized to similarly-sized restriction endonuclease fragments in all the great ape species analyzed. The five human sequences that mapped to the most distal subregion of Yq (deletion of which region is associated with spermatogenic failure in humans) were hybridized to Southern blots generated by pulsed-field gel electrophoresis. These sequences define a region of approximately 1 Mb on human Yq in which HpaII tiny fragment (HTF) islands appear to be absent. The conservation of these human Yq sequences on great ape Y chromosomes indicates a greater stability in this region of the Y than has been previously described for most anonymous human Y chromosomal sequences. The stability of these sequences on great ape Y chromosomes seems remarkable given that this region of the Y does not undergo meiotic recombination and the sequences do not appear to encode genes for which positive selection might occur. Correspondence to: B. Steele Allen  相似文献   

10.
Localization of the cryptdin locus on mouse chromosome 8   总被引:4,自引:0,他引:4  
Cryptdin is a defensin-related peptide, and its mRNA accumulates to high abundance in epithelial cells of intestinal crypts beginning in the second week of postnatal development. The cryptdin (Defcr) locus was assigned to mouse chromosome 8 by Southern blotting of DNAs from mouse/hamster somatic hybrid cell lines. Analysis of somatic hybrid DNAs for mouse-specific restriction fragments showed zero discordance and perfect concordance with chromosome 8. The Defcr locus was localized on chromosome 8 by analysis of DNAs from recombinant inbred (RI) strains of mice after identification of three potential Defcr alleles based on restriction fragment length polymorphisms (RFLPs) in inbred strains. The strain distribution patterns of the Defcr locus were compared with those of chromosome 8 markers in five panels of RI strains. Analysis of cosegregation of Defcr with xenotropic proviral locus Xmv-26 and additional loci confirmed the chromosomal assignment and showed that Defcr is on proximal chromosome 8 within approximately 6 (1.3 to 21.3) cM of Xmv-26. The mouse Defcr locus and the human defensin gene(s) located on chromosome 8p23 appear to map to homologous regions.  相似文献   

11.
To study the evolution and organization of DNA from the human Y chromosome, we constructed a recombinant library of human Y DNA by using a somatic cell hybrid in which the only cytologically detectable human chromosome is the Y. One recombinant (4B2) contained a 3.3-kilobase EcoRI single-copy fragment which was localized to the proximal portion of the Y long arm. Sequences homologous to this human DNA are present in male gorilla, chimpanzee, and orangutan DNAs but not in female ape DNAs. Under stringent hybridization conditions, the homologous sequence is either a single-copy or a low-order repeat in humans and in the apes. With relaxed hybridization conditions, this human Y probe detected several homologous DNA fragments which are all derived from the Y in that they occur in male DNAs from humans and the apes but not in female DNAs. In contrast, this probe hybridized to highly repeated sequences in both male and female DNAs from old world monkeys. Thus, sequences homologous to this probe underwent a change in copy number and chromosomal distribution during primate evolution.  相似文献   

12.
A sorted, cloned Y chromosome phage library was screened for unique Y chromosome sequences. Of the thousands of plaques screened, 13 did not hybridize to radiolabeled 46,XX total chromosomal DNA. Three plaques were characterized further. Clone Y1 hybridized to multiple restriction enzyme fragments in both male and female DNA with more intense bands in male DNA. Clone Y2, also found in female and male DNA, is probably located in the pseudosutosomal region because extra copies of either the X or Y chromosomes increased Y2 restriction enzyme fragment intensity in total cellular DNA. Clone Y5 was male specific in three of four restriction enzyme digests although in the fourth a light hybridizing band was observed in both male and female DNA. Clone Y5 was sublocalized to band Yq 11.22 by hybridization to a panel of cellular DNA from patients with Y chromosome rearrangements. Clone Y5 can be used to test for retention of the proximally long arm Y suggested to cause gonadal cancer in carrier females. The long series of GA repeats in Y5, anticipated to be polymorphic, may provide a sensitive means to follow Y chromosome variation in human populations.  相似文献   

13.
从水稻完整的细胞核中释放出来的染色体DNA在交变脉冲电泳申表现为一种“240kb单位”的形式。这种单位,经限制性内切酶消化,可产生连续分布的大至1500kb的染色体DNA片段。文章讨论了“240kb单位”作为水稻染色体DNA基本结构单位的可能性。  相似文献   

14.
DNAs from 122 individuals representing 5 ethnic groups (Black, Chinese, Japanese, Caucasian and Melanesian) were analyzed for restriction fragment length polymorphisms (RFLPs) with a hypervariable repeated sequence located uniquely on chromosome 1 (hMF No.1; is a component of the D1Z2 locus). When human genomic DNA is digested with a variety of enzymes (TaqI, EcoRI, SinI, PstI, HaeIII) the hMF No.1 probe reveals multiple RFLPs. Ethnic group differences were found in the frequencies of specific EcoRI bands. The most striking ethnic group variation was the presence of a unique fragment amongst the Japanese.  相似文献   

15.
Cellular DNAs from a panel of 20 unrelated individuals were screened for restriction fragment length polymorphisms (RFLP) with a DNA probe containing the first exon of the proopiomelanocortin gene (POMC), which has been assigned to chromosome 2p23-25. Digestion with the restriction endonuclease Sst 1 revealed a high frequency RFLP. The two alleles that were found are fragments of 10- and 15-kilobase (kb) length and are in Hardy-Weinberg equilibrium with frequencies of 72.6% and 27.4%, respectively. Informative families were tested for linkage between POMC/Sst 1 RFLP and other polymorphic markers of chromosome 2. Linkage was excluded to AcP-1 (2p23-25) at 15% recombination, which is still consistent with the chromosomal assignments for these genes. The close physical linkage (10 kb) of the polymorphic locus to the POMC gene makes this RFLP a suitable marker for future linkage studies involving the POMC gene.  相似文献   

16.
The chromosomal location of the human gene for erythropoietin (EPO) was determined by Southern blot hybridization analysis of a panel of human-mouse somatic hybrid cell DNAs. DNAs from cell hybrids containing reduced numbers of human chromosomes were treated with the restriction enzyme PstI and screened with a cloned human EPO cDNA probe. EPO is assigned to human chromosome 7 based on the complete cosegregation of EPO with this chromosome in all 45 cell hybrids tested. A cell hybrid containing a translocated derivative of chromosome 7 localizes EPO to 7pter----q22. A HindIII restriction fragment length polymorphism is detected by hybridization of the EPO cDNA probe to human genomic DNA.  相似文献   

17.
We have characterized a panel of somatic cell hybrid cell lines which contain different portions of human chromosome 10. Genomic DNA from the somatic cell hybrids was tested for hybridization with each of an ordered set of probes used previously to construct a genetic map of chromosome 10, as well as several additional probes, previously localized by in situ hybridization. Hybridization of an unmapped probe to the cell line DNAs can be used to determine its most likely position on the chromosome relative to the mapped set of probes. Genomic DNA from two of the cell lines has been used to construct region-specific cosmid and bacteriophage libraries, and clones derived from these libraries were localized by hybridization to the panel of hybrid cell lines. Several of these probes reveal restriction fragment length polymorphisms which have been genetically mapped. Three of the probes map near the locus for multiple endocrine neoplasia type 2A, and one of these probes, BG-JC353 (D10S167), maps between RBP3 and TB14.34 (D10S34). Another probe, CRI-J282 (D10S104), is close to the FNRB locus. The panel of hybrid cell lines is thus useful for rapidly localizing unmapped probes and as a source of DNA for the construction of recombinant libraries derived from specific regions of the chromosome.  相似文献   

18.
Summary The pericentromeric region of human chromosomes is composed of diverse classes of repetitive DNAs, which provide a rich source of genetic variability. Here, we describe two novel centromeric polymorphisms associated with a subset of alpha satellite repetitive DNA, D11Z1, which is specific for human chromosome 11. Segregation and inheritance of the polymorphisms are demonstrated and their relative frequencies are determined. These polymorphisms may be useful genetic tools for distinguishing between individual chromosome 11 centromeres. In addition, these polymorphisms may be applied to the development of a centromerebased genetic linkage map of chromosome 11. Molecular models for the generation of these polymorphisms are discussed.  相似文献   

19.
Summary We have used two repeated DNA fragments (3.4 and 2.1 kb) released from Y chromosome DNA by digestion with the restriction endonuclease Hae III to analyze potential Y chromosome/autosome translocations. Two female patients were studied who each had an abnormal chromosome 22 with extra quinacrine fluorescent material on the short arm. The origin of the 22p+ chromosomes was uncertain after standard cytologic examinations. Analysis of one patient's DNA with the Y-specific repeated DNA probes revealed the presence of both the 3.4 and 2.1 kb Y-specific fragments. Thus, in this patient, the additional material was from the Y chromosome. Analysis of the second patient's DNA for Y-specific repeated DNA was negative, indicating that the extra chromosomal segment was not from the long arm of the Y chromosome. These two cases demonstrate that repeated DNA can distinguish between similar appearing aberrant chromosomes and may be useful in karyotypic and prenatal diagnosis.  相似文献   

20.
Summary We have screened a human genomic DNA library with an immunoglobulin (Ig) derived switch (S) region specific probe for homologous sequences. Five Ig independent phage clones were isolated and characterized. The S sequence homologous DNA fragments are short compared to the S region sequences. Ig independent S sequences are flanked by highly repetitive DNA elements and perfect inverted repeats can be demonstrated in their close vicinity. Using subclones of S homologous sequences restriction fragment length polymorphisms were shown within DNA of different T cell leukemias. Burkitt lyphhomas, lymphoblastoid cell lines, and DNA of healthy individuals. One of the five clones isolated with the S region probe was evidently localized to chromosome 2 and/or 40 and showed a complex hybridisation pattern with several different human DNAs. S homologous sequences of another clone are most likely localized on chromosome 1. It is possible that these Ig indenpendent S sequences have arisen by amplification and transposition and that they are involved in genetic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号