首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anergy, a condition in which cells persist in the periphery but are unresponsive to antigen, is responsible for silencing many self-reactive B cells. Loss of anergy is known to contribute to the development of autoimmune diseases, including systemic lupus erythematosus and type 1 diabetes. Multiple transgenic mouse models have enabled the dissection of mechanisms that underlie anergy, and recently, anergic B cells have been identified in the periphery of wild-type mice. Heterogeneity of mechanistic concepts developed using model systems has complicated our understanding of anergy and its biological features. In this Review, we compare and contrast the salient features of anergic B cells with a view to developing unifying mechanistic hypotheses that explain their lifestyles.  相似文献   

2.
3.
In this report we extend the in vitro clonal anergy model to examine the regulation of proliferation in T cells that secrete both IL-2 and IL-4. Newly cloned Ag-specific murine T cells are shown to depend on both IL-2 and IL-4 synthesis for maximal proliferation. Whereas IL-2 responsiveness is constitutive in these cells, IL-4 responsiveness develops only after Ag and APC stimulation. Remarkably, proliferation of these cells to Ag is sensitive to inhibition by clonal anergy, even though IL-4 synthesis remains inducible. Anergy in these cells is associated with an inability to respond to IL-4, in addition to the development of an IL-2 production defect. The results suggest that anergy induction may be capable of preventing the clonal expansion of autoreactive T cells producing both IL-2 and IL-4 in vivo.  相似文献   

4.
Regulatory cells, important controllers of immune homeostasis, carry out a multi-pronged attack by deleting overactive pathogenic immune cells, by supporting anergy, and by blocking effector functions, thereby contributing to the amelioration of disease. CD8+ T cells co-expressing CD11c are a new addition to the growing list of regulatory cells. Naïve mice harbor CD11c-expressing CD8+ T cells (<3%) that expand further in an antigen-dependent manner. Although activated CD11c+CD8+ T cells express suppressive cytokines such as IL-10 and TGF-β, their production of IFN-γ is central to their immune suppressive potential. The CD11c+CD8+ T cells target pathogenic CD4+ T cells in a cell-cell contact dependent manner via IDO- and GCN2-dependent mechanisms. Adoptive transfer of activated CD11c+CD8+ T cells halts the progression of autoimmune rheumatoid arthritis and colitis. However, in certain virus and cancer models the CD11c+CD8+ T cells assume the role of immune effectors, boosting immune potential. This seemingly dual nature of these cells - exerting regulatory vs. effector activities - makes them an attractive therapeutic target. In this review, we discuss the discovery, origins and developmental requirements of CD11c+CD8+cells, and the basis of their immuno-suppressive and effector potentials.  相似文献   

5.
Tolerance in T lymphocytes can result from clonal anergy, or paralysis, of Ag-specific T cells. To investigate the molecular mechanisms responsible for anergy, a system in which tolerance can be induced in vitro was employed. Anergy, as defined by long-lived nonresponsiveness to normal antigenic stimulation for IL-2 production, was produced in cloned murine CD4+ Th1 cells. Here we report that such anergic Th1 cells express constitutively reduced amounts of the protein tyrosine kinase p56lck and constitutively elevated levels of the protein tyrosine kinase p59fyn. Because protein tyrosine phosphorylation is known to be important for the normal induction of IL-2 synthesis, these results suggest that T cell anergy may be maintained, at least in part, by alterations in tyrosine phosphorylation signaling events.  相似文献   

6.
Immature dendritic cells (DC) represent potential clinical tools for tolerogenic cellular immunotherapy in both transplantation and autoimmunity. A major drawback in vivo is their potential to mature during infections or inflammation, which would convert their tolerogenicity into immunogenicity. The generation of immature DC from human bone marrow (BM) by low doses of GM-CSF (lowGM) in the absence of IL-4 under GMP conditions create DC resistant to maturation, detected by surface marker expression and primary stimulation by allogeneic T cells. This resistence could not be observed for BM-derived DC generated with high doses of GM-CSF plus IL-4 (highGM/4), although both DC types induced primary allogeneic T cell anergy in vitro. The estabishment of the anergic state requires two subsequent stimulations by immature DC. Anergy induction was more profound with lowGM-DC due to their maturation resistance. Together, we show the generation of immature, maturation-resistant lowGM-DC for potential clinical use in transplant rejection and propose a two-step-model of T cell anergy induction by immature DC.  相似文献   

7.
Oral tolerance is the systemic immunological unresponsiveness that occurs after feeding protein antigens. Its physiological role is thought to be the prevention of hypersensitivity to food antigens, and its therapeutic use to treat inflammatory diseases has been suggested. Although it has been shown that CD4+ T cells mediate oral tolerance, the precise molecular mechanisms remain unclear. In the present study, we employed suppression subtractive hybridization and identified 10 genes specifically expressed in orally tolerized T cells. These included genes that were interesting in terms of their putative functions in the negative regulation of T cell activation, e.g. Culin 1, LAX, and Zfhx1b, as well as four genes that encoded unknown proteins. We further investigated the expression of these genes in hyporesponsive T cells induced in vitro (in vitro anergized T cells). We found that six of the 10 genes were highly expressed in these cells, and kinetic studies suggested that one was associated with the induction of anergy, while the other five were associated with the maintenance of anergy. The remaining 4 genes that were not expressed in in vitro anergized T cells are also of interest as they may play a specific role in in vivo T cell tolerance. Functional analysis of these genes should help to understand the complex mechanisms underlying the induction and maintenance of oral tolerance, and moreover, in vivo immune tolerance in general.  相似文献   

8.
9.
《ImmunoMethods》1993,2(2):125-135
Basic research into the cellular and molecular mechanisms leading to transplantation tolerance has undergone a renaissance during the past decade. A number of elegant and ingenious experimental approaches have been developed and utilized to study, both in vitro and in vivo, the changes in T-lymphocytes that accompany tolerance induction. In this article, we emphasize mechanisms that accomplish T-cell-dependent transplantation tolerance via "passive" (clonal deletion/anergy) and "active" (suppression/priming of IL-4-producing T cells) mechanisms. Evidence is summarized from the recent literature describing several different and important experimental models of transplantation tolerance:intravenous injection of allogeneic cells, direct intrathymic injection of allogeneic cells, transgenic mice expressing genomically incorporated alloantigens, antibody-mediated depletion of T-cell subsets, and neonatal transplantation tolerance. At the present state of our understanding it is clear that only rarely does a single mechanism take sole responsibility for the tolerant condition; neonatal transplantation tolerance is an excellent example of a model that is induced and maintained by a coalition of tolerance-promoting processes. It is also apparent that induction of unresponsiveness among individual T-cells, once thought to occur exclusively in the thymus gland, can occur extrathymically, even among immunocompetent T-cells. This realization has revived optimism among basic and clinical transplanters who have long held the aspiration that prolonged, even indefinite, allograft survival can be achieved in adult human beings with only minimal perturbation of the immune system.  相似文献   

10.
Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo   总被引:10,自引:0,他引:10  
CD4+CD25+ regulatory T cells have been extensively studied during the last decade, but how these cells exert their regulatory function on pathogenic effector T cells remains to be elucidated. Naive CD4+ T cells transferred into T cell-deficient mice strongly expand and rapidly induce inflammatory bowel disease (IBD). Onset of this inflammatory disorder depends on IFN-gamma production by expanding CD4+ T cells. Coinjection of CD4+CD25+ regulatory T cells protects recipient mice from IBD. In this study, we show that CD4+CD25+ regulatory T cells do not affect the initial activation/proliferation of injected naive T cells as well as their differentiation into Th1 effectors. Moreover, naive T cells injected together with CD4+CD25+ regulatory T cells into lymphopenic hosts are still able to respond to stimuli in vitro when regulatory T cells are removed. In these conditions, they produce as much IFN-gamma as before injection or when injected alone. Finally, when purified, they are able to induce IBD upon reinjection into lymphopenic hosts. Thus, prevention of IBD by CD4+CD25+ regulatory T cells is not due to deletion of pathogenic T cells, induction of a non reactive state (anergy) among pathogenic effector T cells, or preferential induction of Th2 effectors rather than Th1 effectors; rather, it results from suppression of T lymphocyte effector functions, leading to regulated responses to self.  相似文献   

11.
M Hubo  H Jonuleit 《PloS one》2012,7(8):e44056

Background

Dendritic cells (DC) play a key role in initiation and regulation of immune responses. Plasmacytoid DC (pDC), a small subset of DC, characterized as type-I interferon producing cells, are critically involved in anti-viral immune responses, but also mediate tolerance by induction of regulatory T cells (Treg). In this study, we compared the capacity of human pDC and conventional DC (cDC) to modulate T cell activity in presence of Foxp3+ Treg.

Principal Findings

In coculture of T effector cells (Teff) and Treg, activated cDC overcome Treg anergy, abrogate their suppressive function and induce Teff proliferation. In contrast, pDC do not break Treg anergy but induce Teff proliferation even in coculture with Treg. Lack of Treg-mediated suppression is independent of proinflammatory cytokines like IFN-α, IL-1, IL-6 and TNF-α. Phenotyping of pDC-stimulated Treg reveals a reduced expression of Treg activation markers GARP and CTLA-4. Additional stimulation by anti-CD3 antibodies enhances surface expression of GARP and CTLA-4 on Treg and consequently reconstitutes their suppressive function, while increased costimulation with anti-CD28 antibodies is ineffective.

Conclusions/Significance

Our data show that activated pDC induce Teff proliferation, but are insufficient for functional Treg activation and, therefore, allow expansion of Teff also in presence of Treg.  相似文献   

12.
T-cell anergy and peripheral T-cell tolerance   总被引:1,自引:0,他引:1  
The discovery that T-cell recognition of antigen can have distinct outcomes has advanced understanding of peripheral T-cell tolerance, and opened up new possibilities in immunotherapy. Anergy is one such outcome, and results from partial T-cell activation. This can arise either due to subtle alteration of the antigen, leading to a lower-affinity cognate interaction, or due to a lack of adequate co-stimulation. The signalling defects in anergic T cells are partially defined, and suggest that T-cell receptor (TCR) proximal, as well as downstream defects negatively regulate the anergic T cell's ability to be activated. Most importantly, the use of TCR-transgenic mice has provided compelling evidence that anergy is an in vivo phenomenon, and not merely an in vitro artefact. These findings raise the question as to whether anergic T cells have any biological function. Studies in rodents and in man suggest that anergic T cells acquire regulatory properties; the regulatory effects of anergic T cells require cell to cell contact, and appear to be mediated by inhibition of antigen-presenting cell immunogenicity. Close similarities exist between anergic T cells, and the recently defined CD4+ CD25+ population of spontaneously arising regulatory cells that serve to inhibit autoimmunity in mice. Taken together, these findings suggest that a spectrum of regulatory T cells exists. At one end of the spectrum are cells, such as anergic and CD4+ CD25+ T cells, which regulate via cell-to-cell contact. At the other end of the spectrum are cells which secrete antiinflammatory cytokines such as interleukin 10 and transforming growth factor-beta. The challenge is to devise strategies that reliably induce T-cell anergy in vivo, as a means of inhibiting immunity to allo- and autoantigens.  相似文献   

13.
In response to suboptimal activation, T cells become hyporesponsive, with a severely reduced capacity to proliferate and produce cytokines upon reencounter with antigen. Chromatin analysis of T cells made tolerant by use of different in vitro and in vivo approaches reveals that the expression of gamma interferon (IFN-γ) is epigenetically silenced in anergic effector TH1 cells. In those T cells, calcium signaling triggers the expression of Tle4, a member of the Groucho family of corepressors, which is then recruited to a distal regulatory element in the Ifng locus and causes the establishment of repressive epigenetic marks at the Ifng gene regulatory elements. Consequently, impaired Tle4 activity results in a markedly reduced capacity to inhibit IFN-γ production in tolerized T cells. We propose that Blimp1-dependent recruitment of Tle4 to the Ifng locus causes epigenetic silencing of the expression of the Ifng gene in anergic TH1 cells. These results define a novel function of Groucho family corepressors in peripheral T cells and demonstrate that specific mechanisms are activated in tolerant T helper cells to directly repress expression of effector cytokines, supporting the hypothesis that stable epigenetic imprinting contributes to the maintenance of the tolerance-associated hyporesponsive phenotype in T cells.  相似文献   

14.
An overview of regulatory T cells   总被引:3,自引:0,他引:3  
The induction of tolerance is essential for the maintenance of immune homeostasis and for the prevention of autoimmune diseases. To induce tolerance the immune system uses several mechanisms, including the deletion of autoreactive T cells, the induction of anergy and active suppression of autoimmune responses. The mechanisms of thymic deletion and anergy of autoreactive T cells are well characterized, whereas active suppression by T regulatory cells, which has recently emerged as an essential component of the immune response to induce peripheral tolerance, is less well understood. Results from seminal studies by a number of laboratories have renewed interest in (CD4(+)) T cells with regulatory properties and some of the researchers who have been involved in this effort have contributed to this Forum on regulatory T cells. This general overview on regulatory T cells comments on recent results in the field of regulatory T cells and presents our current knowledge on Tr1 T cells.  相似文献   

15.
Summary DBA/2 mice were immunized i.p. against syngeneic SL2 lymphosarcoma cells. At various days after the last immunization peritoneal and spleen lymphocytes were collected. The lymphocyte suspensions were enriched for T-cells by nylon wool filtration.The peritoneal T-cells from immunized mice (a) expressed direct specific antitumor cytotoxicity in vitro, (b) induced macrophage cytotoxicity in vitro, and (c) exerted tumor neutralization measured in a Winn-type assay. Spleen T-cells from these immunized mice (a) expressed no direct specific antitumor cytotoxicity in vitro, (b) only induced moderate macrophage cytotoxicity in vitro, but (c) exerted tumor neutralization in a Winn assay.For effective tumor neutralization in vivo effector target cell ratios of 1000:1 were required. When the effector/target ratio of 1000:1 was maintained but the absolute numbers of effector and target cells were lowered from 106 to 105 lymphocytes and 103 to 102 target cells respectively, no tumor neutralization was obtained.The major effect of the sensitized-transferred T-lymphocytes seemed to be the induction of cytotoxic macrophages in the (naive) recipient mice, as the peritoneal macrophages collected from the recipient mice 7 days after i.p. injection of a mixture of sensitized T-cells and tumor cells were cytotoxic. Purified peritoneal T-lymphocytes collected from these recipient mice were able to induce macrophage cytotoxicity in vitro but expressed no cytotoxic T-cell activity.In conclusion, our results show that in the tumor system used, tumor neutralization after transfer of sensitized lymphocytes is not dependent on the presence of cytotoxic T-lymphocytes. Lymphocytes with the strongest potency to render macrophages cytotoxic (in vitro and in vivo) also induce the best tumor neutralization in vivo, suggesting an important role for host macrophages as antitumor effector cells.  相似文献   

16.
Anergy is an important mechanism for the maintenance of peripheral tolerance and avoidance of autoimmunity. The up-regulation of E3 ubiqitin ligases, including GRAIL (gene related to anergy in lymphocytes), is a key event in the induction and preservation of anergy in T cells. However, the mechanisms of GRAIL-mediated anergy induction are still not completely understood. We examined which proteins serve as substrates for GRAIL in anergic T cells. Arp2/3-5 (actin-related protein 2/3 subunit 5) and coronin 1A were polyubiquitinated by GRAIL via Lys-48 and Lys-63 linkages. In anergic T cells and GRAIL-overexpressed T cells, the expression of Arp2/3-5 and coronin 1A was reduced. Furthermore, we demonstrated that GRAIL impaired lamellipodium formation and reduced the accumulation of F-actin at the immunological synapse. GRAIL functions via the ubiquitination and degradation of actin cytoskeleton-associated proteins, in particular Arp2/3-5 and coronin 1A. These data reveal that GRAIL regulates proteins involved in the actin cytoskeletal organization, thereby maintaining the unresponsive state of anergic T cells.  相似文献   

17.
Tolerance to peripheral body antigens involves multiple mechanisms, namely T-cell-mediated suppression of potentially autoimmune cells. Recent in vivo and in vitro evidence indicates that regulatory T cells suppress the response of effector T cells by a mechanism that requires the simultaneous conjugation of regulatory and effector T cells with the same antigen-presenting cell (APC). Despite this strong requirement, it is not yet clear what happens while both cells are conjugated. Several hypotheses are discussed in the literature. Suppression may result from simple competition of regulatory and effector cells for activation resources on the APC; regulatory T cells may deliver an inhibitory signal to effector T cells in the same conjugate; or effector T cells may acquire the regulatory phenotype during their interaction with regulatory T cells. The present article tries to further our understanding of T-cell-mediated suppression, and to narrow-down the number of candidate mechanisms. We propose the first general formalism describing the formation of multicellular conjugates of T cells and APCs. Using this formalism we derive three particular models, representing alternative mechanisms of T-cell-mediated suppression. For each model, we make phase plane and bifurcation analysis, and identify their pros and cons in terms of the relationship with the large body of experimental observations on T-cell-mediated suppression. We argue that accounting for the quantitative details of adoptive transfers of tolerance requires models with bistable regimes in which either regulatory cells or effectors cells dominate the steady state. From this analysis, we conclude that the most plausible mechanism of T-cell-mediated suppression requires that regulatory T cells actively inhibit the growth of effector T cells, and that the maintenance of the population of regulatory T cells is dependent on the effector T cells. The regulatory T cell population may depend on a growth factor produced by effector T cells and/or on a continuous differentiation of effector cells to the regulatory phenotype.  相似文献   

18.
The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3–4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3 GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3+ Treg suppressive potency. In complementary experiments using Foxp3 DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.  相似文献   

19.
20.
The goal of these studies was to define the stimuli and factors that control the induction of anergy in unimmunized resting T lymphocytes. Initial experiments, aimed at establishing the system, showed that exposure of Th1 but not Th2 clones to immobilized anti-CD3 leads to a block in autocrine growth factor production and proliferation upon subsequent restimulation with Ag+APC. Anergy is not prevented by accessory cells, suggesting that this model of T cell tolerance may be due to receptor-mediated inhibitory signals, independent of costimulatory molecules. Culture of small (resting) unimmunized T lymphocytes with anti-CD3 +/- IL-2 induces unresponsiveness to restimulation with anti-CD3, but culture with anti-CD3+IL-4, which stimulates the differentiation of resting cells into IL-4 producers, does not induce anergy. Thus, IL-4-producing clones and bulk populations of IL-4-producing T cells are resistant to Ag receptor-mediated inhibitory stimuli. These results provide experimental models for studying the mechanisms of anergy in normal, unselected, mature T cells, and demonstrate fundamental similarities between cloned cell lines and unimmunized T lymphocytes in the induction of anergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号