首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maternal nutrient restriction results in intrauterine growth restriction (IUGR) newborns that develop obesity despite normal postweaning diet. The epidemic of metabolic syndrome is attributed to programmed "thrifty phenotype" and exposure to Western diets. We hypothesized that programmed IUGR newborns would demonstrate greater susceptibility to obesity and metabolic abnormalities in response to high-fat diet. From day 10 to term gestation and lactation, control pregnant rats received ad libitum (AdLib) food, whereas study rats were 50% food restricted (FR). Cross-fostering techniques resulted in three offspring groups: control (AdLib/AdLib), FR during pregnancy (FR/AdLib), and FR during lactation (AdLib/FR). At 3 weeks, offspring were weaned to laboratory chow or high-fat calorie diet (9% vs. 17% calorie as fat). Body composition, appetite hormones, and glucose and lipid profiles were determined in 9-mo-old male and female offspring. High-fat diet had no effect on body weight of AdLib/AdLib, but significantly increased weights of FR/AdLib and AdLib/FR offspring. High-fat diet significantly increased body fat, reduced lean body mass, and accentuated plasma leptin but not ghrelin levels in both sexes in all groups. In males, high-fat diet caused a significant increase in glucose levels in all three groups with increased insulin levels in AdLib/AdLib and AdLib/FR, but not in FR/AdLib. In females, high-fat diet had no effect on glucose but significantly increased basal insulin among all three groups. High-fat diet caused hypertriglyceridemia in all three groups although only food-restricted females exhibited hypercholesterolemia. Sex and offspring phenotype-associated effects of high-fat diet indicate differing pathophysiologic mechanisms that require specific therapeutic approaches.  相似文献   

2.
The effects of maternal 50% food restriction (FR) during the last week of gestation and/or lactation on pituitary-gonadal axis (at birth and weaning), on circulating levels of leptin (at weaning), and on the onset of puberty have been determined in rats at birth and at weaning. Maternal FR during pregnancy has no effect at term on the litter size, on the basal level of testosterone in male pups, and on the drastic surge of circulating testosterone that occurs 2 h after birth. At weaning, similar retardation of body growth is observed in male and female pups from mothers exposed to FR. This undernutrition induces the most drastic effects when it is performed during both gestation and lactation or during lactation alone. Drastic retardation of testicle growth with reduction of cross-sectional area and intratubular lumen of the seminiferous tubules is observed in male pups from mothers exposed to undernutrition during both gestation and lactation or during lactation alone. Maternal FR during the perinatal period reduces circulating levels of FSH in male pups without affecting LH and testosterone concentrations. Maternal FR does not affect circulating levels of LH, estradiol, and progesterone in female pups. Female pups from mothers exposed to FR during both gestation and lactation show a significant increase of plasma FSH as well as a drastic retardation of ovarian growth. The follicular population was also altered. The number of antral follicles of small size (vesicular follicles) was increased, although the number of antral follicles of large size (graafian follicles) was reduced. Maternal FR occurring during both late gestation and lactation (male and female pups), during lactation alone (male and female pups), or during late gestation (female pups) induces a drastic reduction of plasma leptin and fat mass in pups at weaning. The onset of puberty is delayed in pups of both sexes from mothers exposed to FR during lactation and during both gestation and lactation. In conclusion, these data demonstrate that a perinatal growth retardation induced by maternal FR has long-term consequences on both size and histology of the genitals, on plasma gonadotropins and leptin levels, on fat stores at weaning, and on the onset of puberty.  相似文献   

3.
The objectives of this study were to analyze fetal programming in rat brain using proteomic analysis and to identify fetal programming‐related obesity markers. Sprague–Dawley rats were divided into four feeding groups: (i) the Ad Libitum (AdLib)/AdLib group was given a normal diet during pregnancy and the lactation period; (ii) the AdLib/maternal food restriction group (FR) was subjected to 50% FR during the lactation period; (iii) the FR/AdLib group was subjected to 50% FR during pregnancy; and (iv) the FR/FR group was subjected to 50% FR during pregnancy and the lactation period. Offspring from each group were sacrificed at 3 weeks of age and whole brains were dissected. To obtain a maximum number of protein markers related to obesity, 2DE and Pathway Studio bioinformatics analysis were performed. The identities of the markers among the selected and candidate proteins were confirmed by Western blotting and immunohistochemistry. Proteomic and bioinformatics analyses revealed that expression of ubiquitin carboxy‐terminal hydrolase L1 (UCHL1) and Secernin 1 (SCRN1) were significantly different in the FR/AdLib group compared with the AdLib/AdLib group for both male and female offspring. These findings suggest that UCHL1 and SCRN1 may be used as fetal programming‐related obesity markers.  相似文献   

4.
Intrauterine growth restriction (IUGR), along with postnatal growth trajectory, is closely linked with metabolic diseases and obesity at adulthood. The present study reports the time-dependent metabolomic response of male offspring of rat dams exposed to maternal adequate protein diet during pregnancy and lactation (CC) or protein deprivation during pregnancy only (IUGR with rapid catch-up growth, RC) or through pregnancy and lactation (IUGR with slow postnatal growth, RR). Plasma LC-HRMS metabolomic fingerprints for 8 male rats per group, combined with multivariate statistical analysis (PLS-DA and HCA), were used to study the impact of IUGR and postnatal growth velocity on the offspring metabolism in early life (until weaning) and once they reached adulthood (8 months). Compared with CC rats, RR pups had clear-cut alterations in plasma metabolome during suckling, but none at adulthood; in contrast, in RC pups, alterations in metabolome were minimal in early life but more pronounced in the long run. In particular, our results pinpoint transient alterations in proline, arginine, and histidine in RR rats, compared to CC rats, and persistent differences in tyrosine and carnitine, compared to RC rats at adulthood. These findings suggest that the long-term deregulation in feeding behavior and fatty acid metabolism in IUGR rats depends on postnatal growth velocity.  相似文献   

5.
Our laboratory uses a model of intrauterine growth restriction (IUGR) induced by placental insufficiency in the rat to examine the developmental origins of adult disease. In this model only male IUGR offspring remain hypertensive in adulthood, revealing sex-specific differences. The purpose of this study was to determine whether testosterone with participation of the renin-angiotensin system (RAS) contributes to hypertension in adult male IUGR offspring. At 16 wk of age a significant increase in testosterone (346 +/- 34 vs. 189 +/- 12 ng/dl, P < 0.05) was associated with a significant increase in mean arterial pressure (MAP) measured by telemetry in IUGR offspring (147 +/- 1 vs. 125 +/- 1 mmHg, P < 0.05, IUGR vs. control, respectively). Gonadectomy (CTX) at 10 wk of age significantly reduced MAP by 16 wk of age in IUGR offspring (124 +/- 2 mmHg, P < 0.05 vs. intact IUGR) but had no effect in control (125 +/- 2 mmHg). A significant decrease in MAP in intact IUGR (111 +/- 3 mmHg, P < 0.05 vs. untreated intact IUGR) and castrated IUGR (110 +/- 4 mmHg, P < 0.05 vs. untreated CTX IUGR) after treatment with enalapril for 2 wk suggests a role for RAS involvement. However, the decrease in blood pressure in response to enalapril was greater in intact IUGR (Delta36 +/- 1 mmHg, P < 0.05) compared with CTX IUGR (Delta15 +/- 2 mmHg), indicating an enhanced response to RAS blockade in the presence of testosterone. Thus these results suggest that testosterone plays a role in modulating hypertension in adult male IUGR offspring with participation of the RAS.  相似文献   

6.
Maternal overnutrition prior to and during gestation causes pronounced metabolic dysfunction in the adult offspring. However, less is known about metabolic adaptations in the offspring that occur independently of postnatal growth and nutrition. Therefore, we evaluated the impact of excess maternal dietary lipid intake on the in utero programming of body composition, hepatic function, and hypothalamic development in newborn (P0) offspring. Female mice were fed a low-fat (LF) or high-fat (HF) diet and were mated after 4, 12, and 23 wk. A subset of the obese HF dams was switched to the LF diet during the second (DR2) or third (DR3) pregnancies. The HF offspring accrued more fat mass than the LF pups, regardless of duration of maternal HF diet consumption or prepregnancy maternal adiposity. Increased neonatal adiposity was not observed in the DR3 pups. Liver weights were reduced in the HF offspring but not in the DR2 or DR3 pups. Offspring hepatic triglyceride content was reduced in the HF pups, but hepatic inflammation and expression of lipid metabolism genes were largely unaffected by maternal diet. Maternal diet did not alter the hypothalamic expression of orexigenic and anorexigenic neuropeptides in the offspring. Thus, the intrauterine programming of increased neonatal adiposity and reduced liver size by maternal overnutrition is evident in mice at birth and occurs prior to the development of maternal obesity. These observations demonstrate that dietary intervention during pregnancy minimizes the deleterious effects of maternal obesity on offspring body composition, potentially reducing the offsprings' risk of developing obesity and related diseases later in life.  相似文献   

7.
Intrauterine growth restriction (IUGR) is closely linked with metabolic diseases, appetite disorders and obesity at adulthood. Leptin, a major adipokine secreted by adipose tissue, circulates in direct proportion to body fat stores, enters the brain and regulates food intake and energy expenditure. Deficient leptin neuronal signalling favours weight gain by affecting central homeostatic circuitry. The aim of this study was to determine if leptin resistance was programmed by perinatal nutritional environment and to decipher potential cellular mechanisms underneath.We clearly demonstrated that 5 months old IUGR rats develop a decrease of leptin sentivity, characterized by no significant reduction of food intake following an intraperitoneal injection of leptin. Apart from the resistance to leptin injection, results obtained from IUGR rats submitted to rapid catch-up growth differed from those of IUGR rats with no catch-up since we observed, for the first group only, fat accumulation, increased appetite for food rich in fat and increased leptin synthesis. Centrally, the leptin resistant state of both groups was associated with a complex and not always similar changes in leptin receptor signalling steps. Leptin resistance in IUGR rats submitted to rapid catch-up was associated with alteration in AKT and mTOR pathways. Alternatively, in IUGR rats with no catch-up, leptin resistance was associated with low hypothalamic expression of LepRa and LepRb. This study reveals leptin resistance as an early marker of metabolic disorders that appears before any evidence of body weight increase in IUGR rats but whose mechanisms could depend of nutritional environment of the perinatal period.  相似文献   

8.
Absence of leptin is known to disrupt the development of energy balance regulatory mechanisms. We investigated whether administration of leptin to normally nourished rats affects energy balance in their offspring. Leptin (2 mg.kg(-1).day(-1)) was administered from day 14 of pregnancy and throughout lactation. Male and female offspring were fed either on chow or on high-fat diets that elicited similar levels of obesity in the sexes from 6 wk to 15 mo of age. Treatment of the dams with leptin prevented diet-induced increases in the rate of weight gain, retroperitoneal fat pad weight, area under the intraperitoneal glucose tolerance curve, and fasting plasma insulin concentration in female offspring. In the male offspring, the diet-induced increase in weight gain was prevented and increased fat pad weight was reduced. Energy intake per rat was higher in response to the obesogenic diet in male offspring of saline-treated but not leptin-treated dams. A similar trend was seen in 3-mo-old female offspring. Energy expenditure at 3 mo of age was higher for a given body weight in female offspring of leptin-treated compared with saline-treated dams when these animals were fed on the obesogenic diet. A similar trend was seen for male rats fed on the obesogenic diet. Thus leptin levels during pregnancy and lactation can affect the development of energy balance regulatory systems in their offspring.  相似文献   

9.
Perinatal undernutrition affects not only fetal and neonatal growth but also adult health outcome, as suggested by the metabolic imprinting concept. However, the exact mechanisms underlying offspring metabolic adaptations are not yet fully understood. Specifically, it remains unclear whether the gestation or the lactation is the more vulnerable period to modify offspring metabolic flexibility. We investigated in a rodent model of intrauterine growth restriction (IUGR) induced by maternal protein restriction (R) during gestation which time window of maternal undernutrition (gestation, lactation or gestation–lactation) has more impact on the male offspring metabolomics phenotype. Plasma metabolome and hepatic lipidome of offspring were characterized through suckling period and at adulthood using liquid chromatography–high-resolution mass spectrometry. Multivariate analysis of these fingerprints highlighted a persistent metabolomics signature in rats suckled by R dams, with a clear-cut discrimination from offspring fed by control (C) dams. Pups submitted to a nutritional switch at birth presented a metabolomics signature clearly distinct from that of pups nursed by dams maintained on a consistent perinatal diet. Control rats suckled by R dams presented transiently higher branched-chain amino acid (BCAA) oxidation during lactation besides increased fatty acid (FA) β-oxidation, associated with preserved insulin sensitivity and lesser fat accretion that persisted throughout their life. In contrast, IUGR rats displayed permanently impaired β-oxidation, associated to increased glucose or BCAA oxidation at adulthood, depending on the fact that pups experienced slow postnatal or catch-up growth, as suckled by R or C dams, respectively. Taken together, these findings provide evidence for a significant contribution of the lactation period in metabolic programming.  相似文献   

10.
Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg(3/4) per day (15% excess calories/day) compared with 187 kcal/kg(3/4) per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater (P < 0.005) body weight and higher % body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.  相似文献   

11.
The process whereby a stimulus or stress at a critical or sensitive period of development has long-term effects is termed "programming." Studies in humans and animals convincingly demonstrate that environmental perturbations in utero may permanently change organ structure and metabolism and/or alter homeostatic regulatory mechanisms among the offspring. These programmed changes may be the origins of adult diseases, including cardiovascular disease, obesity, and diabetes. Throughout evolution and development, humans and animals have been exposed to two common environmental stresses, drought and famine. Notably, drought-induced water deprivation is associated with dehydration anorexia and thus a concomitant potential nutrient stress. Our laboratory has performed studies among pregnant rat and sheep in which we simulate drought conditions via maternal dehydration and famine conditions via nutrient restriction. Maternal dehydration results in low-birth-weight offspring, which demonstrate gender-specific plasma hypernatremia and hypertonicity and arterial hypertension. Gestational nutrient restriction also resulted in low-birth-weight offspring. If permitted rapid catch-up growth by nutrient availability, these offspring demonstrate evidence of increased body weight and body fat, and leptin resistance as adults. Conversely, if the catch-up growth is delayed by nutrition restriction, the offspring exhibit normal body weight, body fat, and plasma leptin levels as adults. These studies indicate that osmoregulatory and cardiovascular homeostasis and phenotypic predisposition to obesity may be programmed in utero. Importantly, these results suggest that programming effects may be either potentiated or prevented by interventions during the neonatal period.  相似文献   

12.
Our objective was to investigate the long-term metabolic effects of postnatal essential fatty acid deficiency (EFAD). Mouse dams were fed an EFAD diet or an isoenergetic control diet 4 days before delivery and throughout lactation. The pups were weaned to standard diet (STD) and were later subdivided into two groups: receiving high fat diet (HFD) or STD. Body composition, energy expenditure, food intake and leptin levels were analyzed in adult offspring. Blood glucose and plasma insulin concentrations were measured before and during a glucose tolerance test. EFAD offspring fed STD were leaner with lower plasma leptin and insulin concentrations compared to controls. EFAD offspring fed HFD were resistant to diet-induced obesity, had higher energy expenditure and lower levels of plasma leptin and insulin compared to controls. These results indicate that the fatty acid composition during lactation is important for body composition and glucose tolerance in the adult offspring.  相似文献   

13.
Several studies have shown that maternal undernutrition leading to low birth weight predisposes offspring to the development of metabolic pathologies such as obesity. Using a model of prenatal maternal 70% food restriction diet (FR30) in rat, we evaluated whether postweaning high-fat (HF) diet would amplify the phenotype observed under standard diet. We investigated biological parameters as well as gene expression profile focusing on white adipose tissues (WAT) of adult offspring. FR30 procedure does not worsen the metabolic syndrome features induced by HF diet. However, FR30HF rats displayed catch-up growth to match the body weight of adult control HF animals, suggesting an increase of adiposity while showing hyperleptinemia and a blunted increase of corticosterone. Using quantitative RT-PCR array, we demonstrated that FR30HF rats exhibited leptin and Ob-Rb as well as many peptide precursor and receptor gene expression variations in WAT. We also showed that the expression of genes involved in adipogenesis was modified in FR30HF animals in a depot-specific manner. We observed an opposite variation of STAT3 phosphorylation levels, suggesting that leptin sensitivity is modified in WAT adult FR30 offspring. We demonstrated that 11β-HSD1, 11β-HSD2, GR, and MR genes are coexpressed in WAT and that FR30 procedure modifies gene expression levels, especially under HF diet. In particular, level variation of 11β-HSD2, whose protein expression was detected by Western blotting, may represent a novel mechanism that may affect WAT glucocorticoid sensitivity. Data suggest that maternal undernutrition differently programs the adult offspring WAT gene expression profile that may predispose for altered fat deposition.  相似文献   

14.
Epidemiological studies in humans have shown that perinatal nutrition affects health later in life. We have previously shown that the ratio of n-6 to n-3 polyunsaturated fatty acids (PUFA) in the maternal diet affects serum leptin levels and growth of the suckling pups. The aim of the present study was to investigate the long-term effects of various ratios of the dietary n-6 and n-3 PUFA during the perinatal period on serum leptin, insulin, and triacylglycerol, as well as body growth in the adult offspring. During late gestation and throughout lactation, rats were fed an isocaloric diet containing 7 wt% fat, either as linseed oil (n-3 diet), soybean oil (n-6/n-3 diet), or sunflower oil (n-6 diet). At 3 wk of age, the n-6/n-3 PUFA ratios in the serum phospholipids of the offspring were 2.5, 8.3, and 17.5, respectively. After weaning, all pups were given a standard chow. At the 28th postnatal wk, mean body weight and fasting insulin levels were significantly increased in the rats fed the n-6/n-3 diet perinatally compared with the other groups. The systolic blood pressure and serum triacylglycerol levels were only increased in adult male rats of the same group. These data suggest that the balance between n-6 and n-3 PUFA during perinatal development affects several metabolic parameters in adulthood, especially in the male animals.  相似文献   

15.
A significant number of chronic diseases are linked to perinatal nutrition, and prevention may be associated to naturally occurring components of breast milk. One key hormone in breast milk is leptin, related with the protection from obesity in the adulthood, thus knowing its changes through the day or lactation is crucial. We aimed to investigate the daily rhythms in the milk levels of leptin, together with other two related hormones, ghrelin and adiponectin, during lactation (days 5, 10 and 15) in rat dams, and the relation with morphometric parameters (dams and pups). Summarizing the main results, the existence of biological rhythms, but not daily and maybe circasemidian, was confirmed for the three hormones at the earliest period of lactation. The correlations performed generally showed a possible dependence of milk hormone levels on plasma levels at the early phase of lactation, while with the progression of lactation this dependence may fade and the hormone levels are suggested to be more dependent on mammary gland production/maturation. There was also a correlation between milk leptin and adiponectin levels, especially in the first half of lactation, suggesting a possible parallel regulation. Interestingly, we describe a milk leptin surge around the mid of lactation (at day 10) which may be related with pup´s growth (males and females) and with the well-known (in the literature) plasma leptin surge in pups. All this knowledge may be crucial for future applications in the development of formula milk and in relation with the role of leptin surge during lactation.  相似文献   

16.
During the early post-natal period, offspring are vulnerable to environmental insults, such as nutritional and hormonal changes, which increase risk to develop metabolic diseases later in life. Our aim was to understand whether maternal obesity during lactation programs offspring to metabolic syndrome and obese phenotype, in addition we aimed to assess the peripheral glucose metabolism and hypothalamic leptin/insulin signaling pathways. At delivery, female Wistar rats were randomly divided in two groups: Control group (CO), mothers fed a standard rodent chow (Nuvilab); and Diet-induced obesity group (DIO), mothers who had free access to a diet performed with 33% ground standard rodent chow, 33% sweetened condensed milk (Nestlé), 7% sucrose and 27% water. Maternal treatment was performed throughout suckling period. All offspring received standard rodent chow from weaning until 91-day-old. DIO dams presented increased total body fat and insulin resistance. Consequently, the breast milk from obese dams had altered composition. At 91-day-old, DIO offspring had overweight, hyperphagia and higher adiposity. Furthermore, DIO animals had hyperinsulinemia and insulin resistance, they also showed pancreatic islet hypertrophy and increased pancreatic β-cell proliferation. Finally, DIO offspring showed low ObRb, JAK2, STAT-3, IRβ, PI3K and Akt levels, suggesting leptin and insulin hypothalamic resistance, associated with increased of hypothalamic NPY level and decreased of POMC. Maternal obesity during lactation malprograms rat offspring to develop obesity that is associated with impairment of melanocortin system. Indeed, rat offspring displayed glucose dyshomeostasis and both peripheral and central insulin resistance.  相似文献   

17.
We had shown that adult animals, whose mothers were submitted to protein or energy restriction during lactation, differ from controls in their body weight and thyroid function. The aim of this study was to evaluate, from birth through six months of age, leptin serum concentration, body weight and food intake in animals whose mothers received protein or energy restricted-diet during lactation as follows: control (C)-23% protein; protein-restricted (PR)-8% protein; energy-restricted (ER)-23% protein, in restricted quantity, according to the mean ingestion of the PR group. After weaning (day 21) all pups had free access the control diet. Body weight of pups from PR mothers were always lower than those from controls (p < 0.05), while body weight of pups from ER mothers surpassed that of the C group significantly at 140 days of age. The food intake was lower in both offspring from PR and ER mothers, normalizing on the 32th day in pups from ER mothers and on the 52th day in pups from PR mothers. Leptin serum concentration in both offspring from PR and ER mothers were significantly decreased on the 12th day (p < 0.05) and increased on the 21st day (p < 0.05) compared to control. After weaning there was no differences among the groups. It is possible that changes in leptin concentration during lactation in the offspring of malnourished groups could permanently modify the setpoint for body weight control.  相似文献   

18.
Intrauterine growth restriction (IUGR) due to maternal protein restriction is associated in rats with an alteration in hypothalamic centers involved in feeding behaviour. In order to gain insight into the mechanism of perinatal maternal undernutrition in the brain, we used proteomics approach to identify hypothalamic proteins that are altered in their expression following protein restriction in utero. We used an animal model in which restriction of the protein intake of pregnant rats (8% vs. 20%) produces IUGR pups which were randomized to a nursing regimen leading to either rapid or slow catch-up growth. We identified several proteins which allowed, by multivariate analysis, a very good discrimination of the three groups according to their perinatal nutrition. These proteins were related to energy-sensing pathways (Eno 1, E(2)PDH, Acot 1 and Fabp5), redox status (Bcs 1L, PrdX3 and 14-3-3 protein) or amino acid pathway (Acy1) as well as neurodevelopment (DRPs, MAP2, Snca). In addition, the differential expressions of several key proteins suggested possible shunts towards ketone-body metabolism and lipid oxidation, providing the energy and carbon skeletons necessary to lipogenesis. Our results show that maternal protein deprivation during pregnancy only (IUGR with rapid catch-up growth) or pregnancy and lactation (IUGR with slow postnatal growth) modulates numerous metabolic pathways resulting in alterations of hypothalamic energy supply. As several of these pathways are involved in signalling, it remains to be determined whether hypothalamic proteome adaptation of IUGR rats in response to different postnatal growth rates could also interfere with cerebral plasticity or neuronal maturation.  相似文献   

19.
Pups whose mothers were leptin-treated during the last 3 days of lactation have thyroid dysfunction at adulthood. However, there was no report about leptin treatment in the first days of life or about its action on thyroid function during development. Here, we evaluated the effects of maternal leptin treatment on the first 10 days of lactation upon thyroid function of the offspring at 21, 30, and 180 days old. At birth, lactating Wistar rats were divided into: Leptin (Lep) - leptin-treated (8 μg/100 g of body weight, s.c.) for the first 10 days of lactation and Control (C, saline-treated). Mothers were killed at the end of lactation and their offspring at 21, 30, and 180 days old. Triiodothyronine (T3), thyroxine (T4), thyrotropin (TSH), and leptin levels in serum and milk were measured. Liver mitochondrial glycerolphosphate dehydrogenase (mGPD) activity was determined. Significant differences had p<0.05. At the end of lactation, Lep mothers had higher milk T3 (+ 30%), while their offspring had higher serum T3 (+ 20%) and TSH (+ 84%). At 30 days-old, Lep offspring showed lower TSH ( - 48%), T3 ( - 20%), and mGPDm ( - 42%). At 180 days-old, Lep group presented hyperleptinemia (1.4-fold increase), higher serum T3 (+ 22%), and lower mGPD activity ( - 57%). Maternal hyperleptinemia on lactation causes hypothyroidism in the pups at 30 days, which may program for higher serum T3 at adulthood. In conclusion, maternal hyperleptinemia during lactation, that is common in obese mothers, may have an impact in future disease development, such as thyroid dysfunction.  相似文献   

20.
Maternal serum leptin concentrations have been suggested as a key factor in programming growth patterns and protecting against adult metabolic disease in human offspring. However, the role of maternal leptin in the development of wild rodent offspring is not clear. We tested the hypothesis that maternal hyperleptinemia in lactating Brandt’s voles (Lasiopodomys brandtii) can protect their offspring from the risks of high-fat-diet-induced-obesity and insulin resistance. Lactating voles were supplemented with murine leptin (0.64 μg g−1 day−1) or phosphate-buffered saline (control) on days10–17 of lactation (peak lactation). At 12 weeks of age, the female and male offspring of the two maternal groups were randomly assigned to two groups each and fed either a high-fat diet (41% of gross energy as fat) or a control diet (14% of gross energy as fat) until the age of 23 weeks. Body mass, food intake, glucose tolerance and resting metabolic rate were determined in the four offspring groups. After animals were sacrificed, organ masses and adipose tissue distribution, and serum leptin and insulin concentrations were measured. Offspring of leptin-treated mothers showed no significant differences in body mass, energy intake or energy expenditure, body composition, glucose tolerance or serum leptin and insulin concentrations from offspring of control mothers. The high-fat diet induced increases in body mass (by 23% in female and 17% in male offspring) and reduced glucose tolerance in both female and male offspring, indicative of the emergence of insulin resistance, even though digestible energy intake of the male offspring decreased on the high-fat diet. These results indicate that maternal hyperleptinemia during peak lactation in Brandt’s voles did not protect against diet-induced obesity or glucose intolerance in their offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号