首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The additional penicillin-binding protein (PBP 2') that is important in determining intrinsic resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA) has been detected immunologically in strains from a variety of world-wide locations. This additional protein has also been definitively identified both immunologically and as a PBP in methicillin-resistant strains of S. epidermidis (MRSE). The assay described is rapid, specific and sensitive and has been used to detect PBP 2' in S. haemolyticus but not in beta-lactam resistant Streptococci.  相似文献   

2.
Identification of methicillin-resistant Staphylococcus aureus by drug-susceptibility tests alone poses a serious problem, because a considerable number of clinical S. aureus isolates are borderline resistant to methicillin. To circumvent this problem, we have developed a quick and sensitive method of PCR amplification for the detection of mecA gene, which, coding for PBP2', is the specific genetic element of methicillin-resistant Staphylococcus aureus. This method made it possible to identify MRSA strains in a short time using as few as 30 cells as a starting material for template DNA. Using this method, we found that the strains of borderline methicillin-resistance could be accurately identified. We also found one S. aureus clinical strain, T3, which lacked mecA gene in spite of its resistance to methicillin.  相似文献   

3.
Development of penicillin resistance in Streptococcus pneumoniae is due to successive mutations in penicillin-binding proteins (PBPs) which reduce their affinity for beta-lactam antibiotics. PBP2x is one of the high-Mr PBPs which appears to be altered both in resistant clinical isolates, and in cefotaxime-resistant laboratory mutants. In this study, we have sequenced a 2564 base-pair chromosomal fragment from the penicillin-sensitive S. pneumoniae strain R6, which contains the PBP2x gene. Within this fragment, a 2250 base-pair open reading frame was found which coded for a protein having an Mr of 82.35kD, a value which is in good agreement with the Mr of 80-85 kD measured by SDS-gel electrophoresis of the PBP2x protein itself. The N-terminal region resembled an unprocessed signal peptide and was followed by a hydrophobic sequence that may be responsible for membrane attachment of PBP2x. The corresponding nucleotide sequence of the PBP2x gene from C504, a cefotaxime-resistant laboratory mutant obtained after five selection steps, contained three nucleotide substitutions, causing three amino acid alterations within the beta-lactam binding domain of the PBP2x protein. Alterations affecting similar regions of Escherichia coli PBP3 and Neisseria gonorrhoeae PBP2 from beta-lactam-resistant strains are known. The penicillin-binding domain of PBP2x shows highest homology with these two PBPs and S. pneumoniae PBP2b. In contrast, the N-terminal extension of PBP2x has the highest homology with E. coli PBP2 and methicillin-resistant Staphylococcus aureus PBP2'. No significant homology was detected with PBP1a or PBP1b of Escherichia coli, or with the low-Mr PBPs.  相似文献   

4.
In a previous study, it was found that polyoxotungstates such as undecatungstosilicate (SiW11) greatly sensitized strains of methicillin-resistant Staphylococcus aureus (MRSA) to beta-lactams. In this report, the effects of SiW11 on several MRSA strains with unique resistant mechanisms were studied. SiW11 was still effective to MRSA mutants with higher beta-lactam resistance due to reduced cell-lytic activity. Since the antimicrobial effect of TOC-39 (a cephem antibiotic with strong affinity to penicillin-binding protein (PBP) 2') was not strongly enhanced in any case, it was confirmed that the sensitizing effect of SiW11 is due to reduced expression of PBP2'. However, the sensitizing effect of SiW11 was relatively weak in MRSA strains with lowered susceptibility to glycopeptide antibiotics. A certain resistant mechanism other than the mecA-PBP2' system worked in such a strain. Interestingly, an MRSA mutant with the Eagle-type resistance was dramatically sensitized. This result suggests that SiW11 has another site of action besides reducing the expression of PBP2'.  相似文献   

5.
Fuda C  Suvorov M  Shi Q  Hesek D  Lee M  Mobashery S 《Biochemistry》2007,46(27):8050-8057
The genome of Staphylococcus aureus is constantly in a state of flux, acquiring genes that enable the bacterium to maintain resistance in the face of antibiotic pressure. The acquisition of the mecA gene from an unknown origin imparted S. aureus with broad resistance to beta-lactam antibiotics, with the resultant strain designated as methicillin-resistant S. aureus (MRSA). Epidemiological and genetic evidence suggests that the gene encoding PBP 2a of MRSA might have originated from Staphylococcus sciuri, an animal pathogen, where it exists as a silent gene of unknown function. We synthesized, cloned, and expressed the mecA gene of S. sciuri in Escherichia coli, and the protein product was purified to homogeneity. Biochemical characterization and comparison of the protein to PBP 2a of S. aureus revealed them to be highly similar. These characteristics start with sequence similarity but extend to biochemical behavior in inhibition by beta-lactam antibiotics, to the existence of an allosteric site for binding of bacterial peptidoglycan, to the issues of the sheltered active site, and to the need for conformational change in making the active site accessible to the substrate and the inhibitors. Altogether, the evidence strongly argues that the kinship between the two proteins is deep-rooted on the basis of many biochemical attributes quantified in this study.  相似文献   

6.
The multiple antibiotic resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) has become a major clinical problem worldwide. The key determinant of the broad-spectrum beta-lactam resistance in MRSA strains is the penicillin-binding protein 2a (PBP2a). Because of its low affinity for beta-lactams, PBP2a provides transpeptidase activity to allow cell wall synthesis at beta-lactam concentrations that inhibit the beta-lactam-sensitive PBPs normally produced by S. aureus. The crystal structure of a soluble derivative of PBP2a has been determined to 1.8 A resolution and provides the highest resolution structure for a high molecular mass PBP. Additionally, structures of the acyl-PBP complexes of PBP2a with nitrocefin, penicillin G and methicillin allow, for the first time, a comparison of an apo and acylated resistant PBP. An analysis of the PBP2a active site in these forms reveals the structural basis of its resistance and identifies features in newly developed beta-lactams that are likely important for high affinity binding.  相似文献   

7.
8.
femA is a chromosomally encoded factor, occurring naturally in Staphylococcus aureus, which is essential for the expression of high-level methicillin resistance in this organism. The production of a low-affinity penicillin-binding protein, PBP2a or PBP2', which is intimately involved with methicillin resistance in S. aureus, is not influenced by femA. To elucidate a possible physiological function of the 48-kDa protein encoded by femA, several related methicillin-resistant, methicillin-susceptible, and Tn551 insertionally inactivated femA mutants were analyzed for possible changes in cell wall structure and metabolism. Independent of the presence of mec, the methicillin resistance determinant, all femA mutants had a reduced peptidoglycan (PG) glycine content (up to 60% in the molar ratio of glycine/glutamic acid) compared to that of related femA+ parent strains. Additional effects of femA inactivation and the subsequent decrease in PG-associated glycine were (i) reduced digestion of PG by recombinant lysostaphin, (ii) unaltered digestion of PG by Chalaropsis B-muramidase, (iii) reduced cell wall turnover, (iv) reduced whole-cell autolysis, and (v) increased sensitivity towards beta-lactam antibiotics. Also, the PG-associated glycine content of a femA::Tn551 methicillin-susceptible strain was restored concomitantly with the methicillin resistance to a level almost equal to that of its femA+ methicillin-resistant parent strain by introduction of plasmid pBBB31, encoding femA.  相似文献   

9.
Ceftizoxime, a beta-lactam antibiotic with high selective affinity for penicillin-binding protein 2 (PBP2) of Staphylococcus aureus, was used to select a spontaneous resistant mutant of S. aureus strain 27s. The stable resistant mutant ZOX3 had an increased ceftizoxime MIC and a decreased affinity of its PBP2 for ceftizoxime and produced peptidoglycan in which the proportion of highly cross-linked muropeptides was reduced. The pbpB gene of ZOX3 carried a single C-to-T nucleotide substitution at nucleotide 1373, causing replacement of a proline with a leucine at amino acid residue 458 of the transpeptidase domain of the protein, close to the SFN conserved motif. Experimental proof that this point mutation was responsible for the drug-resistant phenotype, and also for the decreased PBP2 affinity and reduced cell wall cross-linking, was provided by allelic replacement experiments and site-directed mutagenesis. Disruption of pbpD, the structural gene of PBP4, in either the parental strain or the mutant caused a large decrease in the highly cross-linked muropeptide components of the cell wall and in the mutant caused a massive accumulation of muropeptide monomers as well. Disruption of pbpD also caused increased sensitivity to ceftizoxime in both the parental cells and the ZOX3 mutant, while introduction of the plasmid-borne mecA gene, the genetic determinant of the beta-lactam resistance protein PBP2A, had the opposite effects. The findings provide evidence for the cooperative functioning of two native S. aureus transpeptidases (PBP2 and PBP4) and an acquired transpeptidase (PBP2A) in staphylococcal cell wall biosynthesis and susceptibility to antimicrobial agents.  相似文献   

10.
The inactivation of FemB by insertion of Tn551 in the central part of the femB open reading frame was shown to increase susceptibility of methicillin-resistant Staphylococcus aureus strains toward beta-lactam antibiotics to the same extent as did inactivation of femA. Strains carrying the methicillin resistance determinant (mec) and expressing PBP 2' were affected to the same extent as were strains selected for in vitro resistance, which did not express PBP 2'. Both femA and femB, which form an operon, are involved in a yet unknown manner in the glycine interpeptide bridge formation of the S. aureus peptidoglycan. FemB inactivation was shown to reduce the glycine content of peptidoglycan by approximately 40%, depending on the S. aureus strain. The reduction of the interpeptide bridge glycine content led to significant reduction in peptidoglycan cross-linking, as measured by gel permeation high-pressure liquid chromatography of muramidase-digested cell walls. Maximum peptide chain length was reduced by approximately 40%. It is shown that the complete pentaglycine interpeptide bridge is important for the sensitivity against beta-lactam antibiotics and for the undisturbed activity of the staphylococcal cell wall-synthesizing and hydrolyzing enzymes, as was also apparent from electron microscopic examinations, which revealed aberrant placement of cross walls and retarded cell separation, leading to a pseudomulticellular phenotype of the cells for both femA and femB mutants.  相似文献   

11.
Emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created challenges in treatment of nosocomial infections. The recent clinical emergence of vancomycin-resistant MRSA is a new disconcerting chapter in the evolution of these strains. S. aureus normally produces four PBPs, which are susceptible to modification by beta-lactam antibiotics, an event that leads to bacterial death. The gene product of mecA from MRSA is a penicillin-binding protein (PBP) designated PBP 2a. PBP 2a is refractory to the action of all commercially available beta-lactam antibiotics. Furthermore, PBP 2a is capable of taking over the functions of the other PBPs of S. aureus in the face of the challenge by beta-lactam antibiotics. Three cephalosporins (compounds 1-3) have been studied herein, which show antibacterial activities against MRSA, including the clinically important vancomycin-resistant strains. These cephalosporins exhibit substantially smaller dissociation constants for the preacylation complex compared with the case of typical cephalosporins, but their pseudo-second-order rate constants for encounter with PBP 2a (k(2)/K(s)) are not very large (< or =200 m(-1) s(-1)). It is documented herein that these cephalosporins facilitate a conformational change in PBP 2a, a process that is enhanced in the presence of a synthetic surrogate for cell wall, resulting in increases in the k(2)/K(s) parameter and in more facile enzyme inhibition. These findings argue that the novel cephalosporins are able to co-opt interactions between PBP 2a and the cell wall in gaining access to the active site in the inhibition process, a set of events that leads to effective inhibition of PBP 2a and the attendant killing of the MRSA strains.  相似文献   

12.
A methicillin-susceptible, novobiocin-resistant strain of Staphylococcus aureus (RN2677; methicillin MIC, 0.8 micrograms/ml) was transformed with DNA prepared from highly and homogeneously methicillin-resistant S. aureus strains (methicillin MIC, greater than or equal to 400 micrograms/ml) or from heterogeneous strains in which the majority of cells had a low level of resistance (methicillin MIC, 6.3 micrograms/ml). All methicillin-resistant transformants showed low and heterogeneous resistance (methicillin MIC, 3.1 micrograms/ml) irrespective of the resistance level of DNA donors. All transformants examined produced normal amounts of the low-affinity penicillin-binding protein (PBP) 2a, and methicillin resistance and the capacity to produce PBP 2a showed the same degree of genetic linkage to the novobiocin resistance marker with both homogeneous and heterogeneous DNA donors. Next, we isolated a methicillin-susceptible mutant from a highly and homogeneously resistant strain which had a Tn551 insertion near or within the PBP 2a gene and thus did not produce PBP 2a. With this mutant used as the recipient, genetic transformation of the methicillin resistance gene was repeated with DNA isolated either from highly and homogeneously resistant strains or from heterogeneous (low-resistance) strains. All transformants obtained expressed high and homogeneous resistance and produced PBP 2a irrespective of the resistance level of the DNA donors. Our findings suggest that (i) the methicillin resistance locus is identical to the structural gene for PBP 2a, (ii) although the ability to produce PBP 2a is essential for resistance, the MICs for the majority of cells are not related to the cellular concentration of PBP 2a, and (iii) high MICs and homogeneous expression of resistance require the products of other distinct genetic elements as well.  相似文献   

13.
Penicillin-binding protein 2a (PBP2a) of Staphylococcus aureus is refractory to inhibition by available beta-lactam antibiotics, resulting in resistance to these antibiotics. The strains of S. aureus that have acquired the mecA gene for PBP2a are designated as methicillin-resistant S. aureus (MRSA). The mecA gene was cloned and expressed in Escherichia coli, and PBP2a was purified to homogeneity. The kinetic parameters for interactions of several beta-lactam antibiotics (penicillins, cephalosporins, and a carbapenem) and PBP2a were evaluated. The enzyme manifests resistance to covalent modification by beta-lactam antibiotics at the active site serine residue in two ways. First, the microscopic rate constant for acylation (k2) is attenuated by 3 to 4 orders of magnitude over the corresponding determinations for penicillin-sensitive penicillin-binding proteins. Second, the enzyme shows elevated dissociation constants (Kd) for the non-covalent pre-acylation complexes with the antibiotics, the formation of which ultimately would lead to enzyme acylation. The two factors working in concert effectively prevent enzyme acylation by the antibiotics in vivo, giving rise to drug resistance. Given the opportunity to form the acyl enzyme species in in vitro experiments, circular dichroism measurements revealed that the enzyme undergoes substantial conformational changes in the course of the process that would lead to enzyme acylation. The observed conformational changes are likely to be a hallmark for how this enzyme carries out its catalytic function in cross-linking the bacterial cell wall.  相似文献   

14.
All clinical isolates of methicillin-resistant Staphylococcus aureus contain an extra penicillin binding protein (PBP) 2A in addition to four PBPs present in all staphylococcal strains. This extra PBP is thought to be a transpeptidase essential for the continued cell wall synthesis and growth in the presence of beta-lactam antibiotics. As an approach of testing this hypothesis we compared the muropeptide composition of cell walls of a highly methicillin-resistant S. aureus strain containing PBP2A and its isogenic Tn551 derivative with reduced methicillin resistance, which contained no PBP2A because of the insertional inactivation of the PBP2A gene. Purified cell walls were hydrolyzed into muropeptides which were subsequently resolved by reversed-phase high-performance liquid chromatography and identified by chemical and mass spectrometric analysis. The peptidoglycan composition of the two strains were identical. Both peptidoglycans were highly cross-linked mainly through pentaglycine cross-bridges, although other, chemically distinct peptide cross-bridges were also present including mono-, tri-, and tetraglycine; alanine; and alanyl-tetraglycine. Our experiments provided no experimental data for a unique transpeptidase activity associated with PBP2A.  相似文献   

15.
Abstract The methicillin-resistant strain of Staphylococcus aureus MR-1 previously reported to possess a penicillin-binding protein 3 (PBP 3) with a decreased affinity for β-lactam antibiotics was re-examined and, in common with other resistant strains, found to contain an additional PBP (PBP 2'). Expression of the additional protein, which has a very low affinity for β-lactams, was not influenced by temperature or osmolarity of the medium in contrast with strains examined previously. It was the only PBP still available to bind radioactive β-lactams and therefore still active enzymically when strain MR-1 was grown in the presence of concentrations of β-lactam antibiotics sufficient to kill sensitive strains of S. aureus . Penicillin-peptides derived by partial proteolysis of PBP 2'-penicillin complexes of MR-1 and 3 other methicillin-resistant strains appeared to be identical and different from the penicillin-peptides derived from PBP 1, PBP 2 and PBP 3, each of which gave rise to a unique series of peptides containing covalently-bound penicillin.  相似文献   

16.
17.
All methicillin resistant S. aureus (MRSA) strains carry an acquired genetic determinant – mecA or mecC - which encode for a low affinity penicillin binding protein –PBP2A or PBP2A′ – that can continue the catalysis of peptidoglycan transpeptidation in the presence of high concentrations of beta-lactam antibiotics which would inhibit the native PBPs normally involved with the synthesis of staphylococcal cell wall peptidoglycan. In contrast to this common genetic and biochemical mechanism carried by all MRSA strains, the level of beta-lactam antibiotic resistance shows a very wide strain to strain variation, the mechanism of which has remained poorly understood. The overwhelming majority of MRSA strains produce a unique – heterogeneous – phenotype in which the great majority of the bacteria exhibit very poor resistance often close to the MIC value of susceptible S. aureus strains. However, cultures of such heterogeneously resistant MRSA strains also contain subpopulations of bacteria with extremely high beta-lactam MIC values and the resistance level and frequency of the highly resistant cells in such strain is a characteristic of the particular MRSA clone. In the study described in this communication, we used a variety of experimental models to understand the mechanism of heterogeneous beta-lactam resistance. Methicillin-susceptible S. aureus (MSSA) that received the mecA determinant in the laboratory either on a plasmid or in the form of a chromosomal SCCmec cassette, generated heterogeneously resistant cultures and the highly resistant subpopulations that emerged in these models had increased levels of PBP2A and were composed of bacteria in which the stringent stress response was induced. Each of the major heterogeneously resistant clones of MRSA clinical isolates could be converted to express high level and homogeneous resistance if the growth medium contained an inducer of the stringent stress response.  相似文献   

18.
Factors influencing methicillin resistance in staphylococci   总被引:32,自引:0,他引:32  
Methicillin resistance in staphylococci is due to an acquired penicillin-binding protein, PBP2' (PBP2a). This additional PBP, encoded by mecA, confers an intrinsic resistance to all beta-lactams and their derivatives. Resistance levels in methicillin-resistant Staphylococcus aureus (MRSA) depend on efficient PBP2' production and are modulated by chromosomal factors. Depending on the genetic background of the strain that acquired mecA, resistance levels range from phenotypically susceptible to highly resistant. Characteristic for most MRSA is the heterogeneous expression of resistance, which is due to the segregation of a more highly resistant subpopulation upon challenge with methicillin. Maximal expression of resistance by PBP2' requires the efficient and correct synthesis of the peptidoglycan precursor. Genes involved in cell-wall precursor formation and turnover, regulation, transport, and signal transduction may determine the level of resistance that is expressed. At this stage, however, there is no information available on the functionality or efficacy of such factors in clinical isolates in relation to methicillin resistance levels.  相似文献   

19.
Antibiotic-resistant Staphylococcus aureus is a major concern to public health. Methicillin-resistant S. aureus strains are completely resistant to all beta-lactams antibiotics. One of the main factors involved in methicillin resistance in S. aureus is the penicillin-binding protein, PBP2a. This protein is insensitive to inactivation by beta-lactam antibiotics such as methicillin. Although other proteins are implicated in high and homogeneous levels of methicillin resistance, the functions of these other proteins remain elusive. Herein, we report for the first time on the putative function of one of these proteins, FmtA. This protein specifically interacts with beta-lactam antibiotics forming covalently bound complexes. The serine residue present in the sequence motif Ser-X-X-Lys (which is conserved among penicillin-binding proteins and beta-lactamases) is the active-site nucleophile during the formation of acyl-enzyme species. FmtA has a low binding affinity for beta-lactams, and it experiences a slow acylation rate, suggesting that this protein is intrinsically resistant to beta-lactam inactivation. We found that FmtA undergoes conformational changes in presence of beta-lactams that may be essential to the beta-lactam resistance mechanism. FmtA binds to peptidoglycan in vitro. Our findings suggest that FmtA is a penicillin-binding protein, and as such, it may compensate for suppressed peptidoglycan biosynthesis under beta-lactam induced cell wall stress conditions.  相似文献   

20.
The additional penicillin-binding protein (PBP) 2' that is important in determining intrinsic resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA) has been purified by affinity chromatography using monoclonal antibodies. Monoclonal antibody 1/423.10.351 reacted in ELISA with detergent extracts of membranes from resistant organisms, but not in immunoblots with PBP 2' separated by SDS-PAGE. Immunoprecipitation experiments showed that antibody 1/423.10.351 reacted with PBP 2' in detergent extracts. The latter antibody, covalently coupled to protein A-Sepharose through the Fc region, served as an affinity matrix to purify PBP 2'. The PBP was detected in immunoblots using a second monoclonal antibody, 2/401.43. Conjugation of this antibody with alkaline phosphatase afforded more rapid detection of PBP 2' for the immunological detection of PBP 2' both in affinity-purified fractions and in resistant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号