首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A. M. Bailis  R. Rothstein 《Genetics》1990,126(3):535-547
Null mutations in three recombination and DNA repair genes were studied to determine their effects on mitotic recombination between the duplicate AdoMet (S-adenosylmethionine) synthetase genes (SAM1 and SAM2) in Saccharomyces cerevisiae. SAM1 and SAM2, located on chromosomes XII and IV, respectively, encode functionally equivalent although differentially regulated AdoMet synthetases. These similar but not identical (homeologous) genes are 83% homologous at the nucleotide level and this identity is limited solely to the coding regions of the genes. Single frameshift mutations were introduced into the 5' end of SAM1 and the 3' end of SAM2 by restriction site ablation. The sequences surrounding these mutations differ significantly in their degree of homology to the corresponding area of the other gene. Mitotic ectopic recombination between the mutant sam genes occurs at a rate of 8.4 x 10(-9) in a wild-type genetic background. Gene conversion of the marker within the region of greater sequence homology occurs 20-fold more frequently than conversion of the marker within the region of relative sequence diversity. The relative orientation of the two genes prevents the recovery of translocations. Mitotic recombination between the sam genes is completely dependent on the DNA repair and recombination gene RAD52. A mutation in PMS1, a mismatch repair gene, causes a 4.5-fold increase in the rate of ectopic recombination. RAD1, an excision repair gene, is required to observe this increased rate of ectopic conversion. In addition, RAD1 is involved in modulating the pattern of coconversion during recombination between the homeologous sam genes. These results suggest that interactions between mismatch repair, excision repair and recombinational repair functions are involved in determining the ectopic gene conversion frequency between the sam genes.  相似文献   

2.
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.  相似文献   

3.
The RAD1 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of damaged DNA. In this paper, we report our observations on the effect of the RAD1 gene on genetic recombination. Mitotic intrachromosomal and interchromosomal recombination in RAD+, rad1, rad52, and other rad mutant strains was examined. The rad1 deletion mutation and some rad1 point mutations reduced the frequency of intrachromosomal recombination of a his3 duplication, in which one his3 allele is deleted at the 3' end while the other his3 allele is deleted at the 5' end. Mutations in the other excision repair genes, RAD2, RAD3, and RAD4, did not lower recombination frequencies in the his3 duplication. As expected, recombination between the his3 deletion alleles in the duplication was reduced in the rad52 mutant. The frequency of HIS3+ recombinants fell synergistically in the rad1 rad52 double mutant, indicating that the RAD1 and RAD52 genes affect this recombination via different pathways. In contrast to the effect of mutations in the RAD52 gene, mutations in the RAD1 gene did not lower intrachromosomal and interchromosomal recombination between heteroalleles that carry point mutations rather than partial deletions; however, the rad1 delta mutation did lower the frequency of integration of linear plasmids and DNA fragments into homologous genomic sequences. We suggest that RAD1 plays a role in recombination after the formation of the recombinogenic substrate.  相似文献   

4.
The RAD27/RTH1 gene of Saccharomyces cerevisiae encodes a structural and functional homolog of the 5'-3' exonuclease function of Escherichia coli DNA polymerase I. Four alleles of RAD27 were recovered in a screen for hyper-recombination, a phenotype also displayed by polA mutants of E.coli. All four rad27 mutants showed similar high levels of mitotic recombination, but varied in their growth rate at various temperatures, and sensitivity to the DNA damaging agent methyl methane sulfonate. Dependence of viability of rad27 strains on recombination was determined by crossing a strain containing a null allele of RAD27 to strains containing a mutation in either the RAD1, RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, MRE11, XRS2 or RAD59 gene. In no case were viable spore products recovered that contained both mutations. Elimination of the non-homologous end-joining pathway did not affect the viability of a rad27 strain. This suggests that lesions generated in the absence of RAD27 must be processed by homologous recombination.  相似文献   

5.
6.
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent.  相似文献   

7.
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.  相似文献   

8.
M F Christman  F S Dietrich  G R Fink 《Cell》1988,55(3):413-425
We have found that mitotic recombination within the S. cerevisiae rDNA cluster (200 tandemly repeated 9.1 kb units) is strongly suppressed and that this suppression requires the combined action of DNA topoisomerases I and II. Strains with a null mutation in the TOP1 gene (encoding topoisomerase I) or a ts mutation in the TOP2 gene (encoding topoisomerase II) grown at a semipermissive temperature show 50- to 200-fold higher frequencies of mitotic recombination in rDNA relative to TOP+ controls. Suppression of recombination is specific to the rDNA because the recombination frequency at another tandem array, the CUP1 locus, at a simple HIS4 duplication, or among dispersed repeats (MAT and HML or HMR) is not elevated in top1 or top2 mutants. The high frequency of mitotic recombination within the rDNA cluster in topoisomerase mutants shows that both TOP1 and TOP2 are required for suppression of recombination in this region of the genome.  相似文献   

9.
In budding yeast, loss of topoisomerase III, encoded by the TOP3 gene, leads to a genomic instability phenotype that includes slow growth, hyper-sensitivity to genotoxic agents, mitotic hyper-recombination, increased chromosome missegregation, and meiotic failure. Slow growth and other defects of top3 mutants are suppressed by mutation of SGS1, which encodes the only RecQ helicase in S. cerevisiae. sgs1 is epistatic to top3, suggesting that the two proteins act in the same pathway. To identify other factors that function in the Sgs1-Top3 pathway, we undertook a genetic screen for non-sgs1 suppressors of top3 defects. We found that slow growth and DNA damage sensitivity of top3 mutants are suppressed by mutations in RAD51, RAD54, RAD55, and RAD57. In contrast, top3 mutants show extreme synergistic growth defects with mutations in RAD50, MRE11, XRS2, RDH54, and RAD1. We also analyzed recombination at the SUP4-o region, showing that in a rad51, rad54, rad55, or rad57 background top3Delta does not increase recombination to the same degree as in a wild-type strain. These results suggest that the presence of the Rad51 homologous recombination complex in a top3 background facilitates creation of detrimental intermediates by Sgs1. We present a model wherein Rad51 helps recruit Sgs1-Top3 to sites of replicative damage.  相似文献   

10.
In Saccharomyces cerevisiae, a large number of genes in the RAD52 epistasis group has been implicated in the repair of chromosomal double-strand breaks and in both mitotic and meiotic homologous recombination. While most of these genes are essential for yeast mating-type (MAT) gene switching, neither RAD50 nor XRS2 is required to complete this specialized mitotic gene conversion process. Using a galactose-inducible HO endonuclease gene to initiate MAT switching, we have examined the effect of null mutations of RAD50 and of XRS2 on intermediate steps of this recombination event. Both rad50 and xrs2 mutants exhibit a marked delay in the completion of switching. Both mutations reduce the extent of 5'-to-3' degradation from the end of the HO-created double-strand break. The steps of initial strand invasion and new DNA synthesis are delayed by approximately 30 min in mutant cells. However, later events are still further delayed, suggesting that XRS2 and RAD50 affect more than one step in the process. In the rad50 xrs2 double mutant, the completion of MAT switching is delayed more than in either single mutant, without reducing the overall efficiency of the process. The XRS2 gene encodes an 854-amino-acid protein with no obvious similarity to the Rad50 protein or to any other protein in the database. Overexpression of RAD50 does not complement the defects in xrs2 or vice versa.  相似文献   

11.
12.
M. Saparbaev  L. Prakash    S. Prakash 《Genetics》1996,142(3):727-736
The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3Δ mutation has an effect on recombination similar to that of the rad1Δ and rad10Δ mutations. The msh2Δ mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integration of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAD1-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process.  相似文献   

13.
The RAD51 protein plays a key part in the process of homologous recombination through its catalysis of homologous DNA pairing and strand exchange. Additionally five novel mammalian RAD51-like proteins have been identified in mammalian cells, but their roles in homologous recombination are much less well established. These RAD51-like proteins form two different complexes, but only the RAD51L2 (RAD51C) protein is a part of both complexes. By using site-directed mutagenesis of RAD51L2, we show that non-conservative mutation of the putative ATP-binding domain severely reduces its function, whereas a conservative mutation shows partial loss of function. We find that the protein is localized to the nucleus by tagging RAD51L2 with the green fluorescent protein and provisionally identify a C-terminal domain that acts as a nuclear localization signal. Further, a RAD51L2-deficient cell line was found to have significantly reduced homology-directed repair of a DNA double-strand break by gene conversion. This recombination defect could be partially restored by ectopic expression of the human RAD51L2 protein. Therefore we have identified protein domains that are important for the correct functioning of RAD51L2 and have shown that there is a specific requirement for RAD51L2 in gene conversion in mammalian cells.  相似文献   

14.
15.
The Saccharomyces cerevisiae SGS1 gene is homologous to Escherichia coli RecQ and the human BLM and WRN proteins that are defective in the cancer-prone disorder Bloom's syndrome and the premature aging disorder Werner's syndrome, respectively. While recQ mutants are deficient in conjugational recombination and DNA repair, Bloom's syndrome cell lines show hyperrecombination. Bloom's and Werner's syndrome cell lines both exhibit chromosomal instability. sgs1Δ strains show mitotic hyperrecombination, as do Bloom's cells. This was manifested as an increase in the frequency of interchromosomal homologous recombination, intrachromosomal excision recombination, and ectopic recombination. Hyperrecombination was partially independent of both RAD52 and RAD1. Meiotic recombination was not increased in sgs1Δ mutants, although meiosis I chromosome missegregation has been shown to be elevated. sgs1Δ suppresses the slow growth of a top3Δ strain lacking topoisomerase III. Although there was an increase in subtelomeric Y' instability in sgs1Δ strains due to hyperrecombination, no evidence was found for an increase in the instability of terminal telomeric sequences in a top3Δ or a sgs1Δ strain. This contrasts with the telomere maintenance defects of Werner's patients. We conclude that the SGS1 gene product is involved in the maintenance of genome stability in S. cerevisiae.  相似文献   

16.
17.
E. L. Ivanov  V. G. Korolev    F. Fabre 《Genetics》1992,132(3):651-664
The XRS2 gene of Saccharomyces cerevisiae has been previously identified as a DNA repair gene. In this communication, we show that XRS2 also encodes an essential meiotic function. Spore inviability of xrs2 strains is rescued by a spo13 mutation, but meiotic recombination (both gene conversion and crossing over) is highly depressed in spo13 xrs2 diploids. The xrs2 mutation suppresses spore inviability of a spo13 rad52 strain suggesting that XRS2 acts prior to RAD52 in the meiotic recombination pathway. In agreement with the genetic data, meiosis-specific double-strand breaks at the ARG4 meiotic recombination hotspot are not detected in xrs2 strains. Despite its effects on meiotic recombination, the xrs2 mutation does not prevent mitotic recombination events, including homologous integration of linear DNA, mating-type switching and radiation-induced gene conversion. Moreover, xrs2 strains display a mitotic hyper-rec phenotype. Haploid xrs2 cells fail to carry out G2-repair of gamma-induced lesions, whereas xrs2 diploids are able to perform some diploid-specific repair of these lesions. Meiotic and mitotic phenotypes of xrs2 cells are very similar to those of rad50 cells suggesting that XRS2 is involved in homologous recombination in a way analogous to that of RAD50.  相似文献   

18.
H. L. Klein 《Genetics》1997,147(4):1533-1543
Most mitotic recombination and repair genes of Saccharomyces cerevisiae show no specificity of action for the genome ploidy. We describe here a novel repair and recombination gene that is specific for recombination and repair between homologous chromosomes. The RDH54 gene is homologous to the RAD54 gene, but rdh54 mutants do not show sensitivity to methyl methanesulfonate at concentrations that sensitize a rad54 mutant. However, the rdh54 null mutation enhances the methyl methanesulfonate sensitivity of a rad54 mutant and single rdh54 mutants are sensitive to prolonged exposure at high concentrations of methyl methanesulfonate. The RDH54 gene is required for recombination, but only in a diploid. We present evidence showing that the RDH54 gene is required for interhomologue gene conversion but not intrachromosomal gene conversion. The rdh54 mutation confers diploid-specific lethalities and reduced growth in various mutant backgrounds. These phenotypes are due to attempted recombination. The RDH54 gene is also required for meiosis as homozygous mutant diploids show very poor sporulation and reduced spore viability. The role of the RDH54 gene in mitotic repair and in meiosis and the pathway in which it acts are discussed.  相似文献   

19.
The RAD3 gene of Saccharomyces cerevisiae is required for UV excision-repair and is essential for cell viability. We have identified the rem1 mutations (enhanced spontaneous mitotic recombination and mutation) of Saccharomyces cerevisiae as alleles of RAD3 by genetic mapping, complementation with the cloned wild-type gene, and DNA hybridization. The high levels of spontaneous mitotic gene conversion, crossing over, and mutation conferred upon cells by the rem1 mutations are distinct from the effects of all other alleles of RAD3. We present preliminary data on the localization of the rem1 mutations within the RAD3 gene. The interaction of the rem1 mutant alleles with a number of radiation-sensitive mutations is also different than the interactions reported for previously described (UV-sensitive) alleles of RAD3. Double mutants of rem1 and a defect in the recombination-repair pathway are inviable, while double mutants containing UV-sensitive alleles of RAD3 are viable. The data presented here demonstrate that: (1) rem1 strains containing additional mutations in other excision-repair genes do not exhibit elevated gene conversion; (2) triple mutants containing rem1 and mutations in both excision-repair and recombination-repair are viable; (3) such triple mutants containing rad52 have reduced levels of gene conversion but wild-type frequencies of crossing over. We have interpreted these observations in a model to explain the effects of rem1. Consistent with the predictions of the model, we find that the size of DNA from rem1 strains, as measured by neutral sucrose gradients, is smaller than wild type.  相似文献   

20.
A hyper-recombination mutation was isolated that causes an increase in recombination between short repeated delta sequences surrounding the SUP4-omicron gene in S. cerevisiae. The wild-type copy of this gene was cloned by complementation of one of its pleiotropic phenotypes, slow growth. DNA sequence of the clone revealed a 656 amino acid open reading frame capable of encoding a protein homologous to the bacterial type I topoisomerase. No homology was detected with previously identified eukaryotic topoisomerases. Construction of double mutants with either of the two known yeast topoisomerase genes revealed synergistic effects on growth suggesting overlapping functions. Expression of bacterial topoisomerase I in yeast can fully complement the slow growth defect of a null mutation. We have named this locus TOP3 and suggest that it defines a novel eukaryotic topoisomerase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号