首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
石油烃的厌氧生物降解对油藏残余油气化开采的启示   总被引:1,自引:0,他引:1  
利用微生物将油藏中难以动用的原油就地转化为甲烷,以天然气的形式开采、或作为战略资源就地储备,从而大幅度提高油气资源的利用率,是当前国际上研究的前沿课题。本文综述了石油烃厌氧生物降解转化为甲烷的菌群结构、反应热力学和反应动力学等基础科学问题的最新研究进展,讨论了油藏残余油气化开采技术的可行性及开发潜力,提出了该技术进一步研究的方向。  相似文献   

2.
Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO2 and either ethanol or lactate but not H2 gas as an electron donor. During syntrophic methanogenesis, flocs were the primary site for formate production via ethanol-dependent CO2 reduction, with a formate production rate and methanogenic turnover constant of 660 μM/h and 0.044/min, respectively. Floc preparations accumulated fourfold-higher levels of formate (40 μM) than digestor contents, and the free flora was the primary site for formate cleavage to CO2 and H2 (90 μM formate per h). Inhibition of methanogenesis by CHCl3 resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H2 gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and its exogenous addition neither stimulated methanogenesis nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and that <10% was mediated via interspecies H2 transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.  相似文献   

3.
The bioenergetics of methanogenesis   总被引:29,自引:0,他引:29  
The reduction of CO2 or any other methanogenic substrate to methane serves the same function as the reduction of oxygen, nitrate or sulfate to more reduced products. These exergonic reactions are coupled to the production of usable energy generated through a charge separation and a protonmotive-force-driven ATPase. For the understanding of how methanogens derive energy from C-1 unit reduction one must study the biochemistry of the chemical reactions involved and how these are coupled to the production of a charge separation and subsequent electron transport phosphorylation. Data on methanogenesis by a variety of organisms indicates ubiquitous use of CH3-S-CoM as the final electron acceptor in the production of methane through the methyl CoM reductase and of 5-deazaflavin as a primary source of reducing equivalents. Three known enzymes serve as catalysts in the production of reduced 5-deazaflavin: hydrogenase, formate dehydrogenase and CO dehydrogenase. All three are potential candidates for proton pumps. In the organisms that must oxidize some of their substrate to obtain electrons for the reduction of another portion of the substrate to methane (e.g., those using formate, methanol or acetate), the latter two enzymes may operate in the oxidizing direction. CO2 is the most frequent substrate for methanogenesis but is the only substrate that obligately requires the presence of H2 and hydrogenase. Growth on methanol requires a B12-containing methanol-CoM methyl transferase and does not necessarily need any other methanogenic enzymes besides the methyl-CoM reductase system when hydrogenase is present. When bacteria grow on methanol alone it is not yet clear if they get their reducing equivalents from a reversal of methanogenic enzymes, thus oxidizing methyl groups to CO2. An alternative (since these and acetate-catabolizing methanogens possess cytochrome b) is electron transport and possible proton pumping via a cytochrome-containing electron transport chain. Several of the actual components of the methanogenic pathway from CO2 have been characterized. Methanofuran is apparently the first carbon-carrying cofactor in the pathway, forming carboxy-methanofuran. Formyl-FAF or formyl-methanopterin (YFC, a very rapidly labelled compound during 14C pulse labeling) has been implicated as an obligate intermediate in methanogenesis, since methanopterin or FAF is an essential component of the carbon dioxide reducing factor in dialyzed extract methanogenesis. FAF also carries the carbon at the methylene and methyl oxidation levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation.  相似文献   

5.
In spite of their chemical inertness, hydrocarbons are degraded by microorganisms in the complete absence of oxygen. As all known aerobic hydrocarbon degradation pathways start with oxygen-dependent reactions, hydrocarbon catabolism in anaerobes must be initiated by novel biochemical reactions. In recent years, the enzymes catalyzing oxygen-independent activation of several hydrocarbons have been identified. Surprisingly, a variety of reactions seems to be employed to overcome the activation barrier of different hydrocarbons. This review presents the current understanding on some of these reactions and the associated degradation pathways: oxygen-independent hydroxylation as employed in ethylbenzene metabolism, fumarate addition to methyl or methylene carbons in toluene or alkane degradation, and only recently discovered reactions such as methylation of naphthalene or anaerobic methane oxidation via reverse methanogenesis.  相似文献   

6.
Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 μmol CH4 g−1 oil d−1, orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC–MS and FTICR–MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.  相似文献   

7.
Martin WF 《FEBS letters》2012,586(5):485-493
Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation.  相似文献   

8.
Members of the genus Methanosarcina are strictly anaerobic archaea that derive their metabolic energy from the conversion of a restricted number of substrates to methane. H2 + CO2 are converted to CH4 via the CO2-reducing pathway, while methanol and methylamines are metabolized by the methylotrophic pathway. Two novel electron transport systems are involved in the process of methanogenesis. Both systems are able to use a heterodisulfide as electron acceptor and either H2 or F420H2 as electron acceptors and generate a proton-motive force by redox potential-driven H(+)-translocation. The H2:heterodisulfide oxidoreductase is composed of an F420-nonreducing hydrogenase and the heterodisulfide reductase. The latter protein is also part of the F420H2:heterodisulfide oxidoreductase system. The second component of this system is referred to as F420H2 dehydrogenase. The archaeal protein is a homologue of complex I of the respiratory chain from bacteria and mitochondria. This review focuses on the biochemical and genetic characteristics of the three energy-transducing enzymes and on the mechanisms of ion translocation.  相似文献   

9.
Electron transfer reactions in methanogens   总被引:2,自引:0,他引:2  
Abstract Methanogenic bacteria comprise a specialized group of obligately anaerobic microorganisms able to reduce a limited number of substrates to CH4. The intermediates involved in this reduction process remain bound to a series of typical C1-carriers. Reducing equivalents are either obtained from the oxidation of H2 or from oxidation of carbon substrates to CO2. Electron transfer reactions thus constitute the very essence of the process of methanogenesis.
In recent years much progress has been made in the elucidation of the special metabolic pathways and the nature of the C1-carriers involved in methanogenic bacteria. The energy generated at the oxidoreduction reactions, notably at the methylreductase step, is conserved by ATP synthesis. The energy is used for cell carbon synthesis and, in catalytic amounts, for the reductive activation of some methanogenic enzymes. Before the condensing reaction resulting in the formation of acetyl-CoA takes place, 2 C1-units are reduced or oxidized depending on the substrate to a carbonyl and a -CH3 group. Formation of the latter proceeds via the methanogenic route. Intermediary cell carbon synthesis starting from acetyl-CoA involves reductive carboxylations and oxidoreductions by the participation of the enzymes of the tricarboxylic acid cycle.  相似文献   

10.
Crude inside-out vesicles from the methanogenic strain G?1 were prepared via protoplasts. These vesicles catalyzed methane formation from methyl-CoM and H2 at a maximal rate of 35 nmol/min.mg protein. Methane formation by the vesicles did not depend on the addition of ATP. This was in contrast to conventionally prepared crude extracts from the same organism or from Methanosarcina barkeri which exhibited strict ATP dependence of methanogenesis. ATP analogues inhibited methanogenesis by extracts to a much higher extent than that by vesicles. Both, particulate and soluble components prepared from the crude vesicles by ultracentrifugation were necessary for ATP-independent methane formation from methyl-CoM and H2. Hydrogenase activity was mainly associated with the particulate fraction whereas methyl-CoM methylreductase could be assigned to the soluble fraction. The detergent sulfobetaine inhibited methane formation from methyl-CoM without affecting hydrogenase or titanium citrate-dependent methylreductase activities, indicating that an additional membraneous component is involved in methanogenesis for methyl-CoM and H2.  相似文献   

11.
Sulfate reduction in methanogenic bioreactors   总被引:9,自引:0,他引:9  
Abstract: In the anaerobic treatment of sulfate-containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate.  相似文献   

12.
The degradation of amino acids in anaerobic digestion was examined in terms of the interactions between amino-acid-degrading bacteria and methanogenic bacteria. Certain amino acids were degraded oxidatively by dehydrogenation, with methanogenic bacteria acting as H(2) acceptors. The inhibition of methanogenesis by chloroform also inhibited the degradation of these amino acids and/or caused variations in the composition of volatile acids produced from them. The presence of glycine reduced the inhibitory effect caused by chloroform, probably because glycine acted as an H(2) acceptor in place of methanogenic bacteria. This fact suggested that the coupled oxidation-reduction reactions between two amino acids-one acting as the H(2) donor and the other acting as the H(2) acceptor-may occur in the anaerobic digestion of proteins or amino-acid mixtures. The conversion of some proteins to volatile acids was not affected when methanogenesis was inhibited by chloroform. This suggested that the component amino acids of proteins may be degraded by the coupled oxidation-reduction reactions and that the degradation of proteins may not be dependent on the activity of methanogenic bacteria as H(2) acceptors.  相似文献   

13.
Catabolic reactions provide the chemical energy necessary for the maintenance of living microorganisms. The catabolic reactions in anaerobic digestion process may progress close to the equilibrium state (ΔG = 0) depending strongly on the microorganisms in the digester. The thermodynamic equilibrium of catabolic reactions in the anaerobic digestion process was modelled under isothermal and isobaric conditions. Three thermodynamic models were considered; the ideal, the Debye-Hückel–Praunitz, and the Pitzer–Praunitz. The models in this paper concentrate on the methanogenic equilibrium of the anaerobic digestion process. The thermodynamic equilibrium model shows that the methanogenesis step requires thermal energy and electrons, so that anaerobic digestion may achieve high substrate degradation and high conversion to methane. Some thermodynamic recommendations are suggested for the future development of the methanogenic phase of anaerobic digestion.  相似文献   

14.
15.
Abstract In the process of methanogenesis, 5,6,7,8-tetrahydromethanopterin (H4MPT) is the carrier of the C1 unit at the formyl through methyl state of reduction. By the transfer of a formyl group from formylmethanofuran, 5-formyl- and 10-formyl-H4MPT are formed in hydrogenotrophic and methylotrophic organisms, respectively. Cyclohydrolysis of the 5- and 10-formyl derivatives then yields 5,10-methenyl-H4MPT, which is reduced in two subsequent coenzyme F420-dependent reactions to 5-methyl-H4MPT. Following the transfer of the methyl group to coenzyme M, the substrate of the terminal step in methanogenesis, methylcoenzyme M, is produced. In this paper properties of the enzymes catalyzing the individual H4MPT-dependent reactions are discussed.  相似文献   

16.
The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increased in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation.  相似文献   

17.
Most methanogenic archaea can reduce CO(2) with H(2) to methane, and it is generally assumed that the reactions and mechanisms of energy conservation that are involved are largely the same in all methanogens. However, this does not take into account the fact that methanogens with cytochromes have considerably higher growth yields and threshold concentrations for H(2) than methanogens without cytochromes. These and other differences can be explained by the proposal outlined in this Review that in methanogens with cytochromes, the first and last steps in methanogenesis from CO(2) are coupled chemiosmotically, whereas in methanogens without cytochromes, these steps are energetically coupled by a cytoplasmic enzyme complex that mediates flavin-based electron bifurcation.  相似文献   

18.
Tests were made to determine the effects of inorganic and organic sulfur sources on the degradation of cellulose to methane in a chemically defined medium with sulfur-poor inoculum prepared from sewage sludge. The results show that a sulfur source of about a 0.85 mM concentration is essential for the degradation of cellulose to CH4. However, the production of CH4 from CO2 and H2 provided in the headspace occurred with 0.1 mM sulfate or sulfide. At a 9 mM concentration, all inorganic sulfur compounds other than sulfate inhibited both cellulose degradation and methane formation, and this inhibition increased in the order thiosulfate less than sulfite less than sulfide less than H2S. It appears that the degradation of cellulose to CH4 in a sulfate-free medium by inoculum maintained in a low-sulfur medium is inhibited because of the lack of availability of sulfur for growth of bacteria and synthesis of cell materials and sulfur-containing cofactors involved in cellulose degradation and methanogenesis. The reduction of methanogenesis by higher levels of sulfate probably occurs as a result of stimulation of reactions converting acetate and H2 to end products other than CH4.  相似文献   

19.
A model for the origin of biochemistry at an alkaline hydrothermal vent has been developed that focuses on the acetyl-CoA (Wood-Ljungdahl) pathway of CO2 fixation and central intermediary metabolism leading to the synthesis of the constituents of purines and pyrimidines. The idea that acetogenesis and methanogenesis were the ancestral forms of energy metabolism among the first free-living eubacteria and archaebacteria, respectively, stands in the foreground. The synthesis of formyl pterins, which are essential intermediates of the Wood-Ljungdahl pathway and purine biosynthesis, is found to confront early metabolic systems with steep bioenergetic demands that would appear to link some, but not all, steps of CO2 reduction to geochemical processes in or on the Earth's crust. Inorganically catalysed prebiotic analogues of the core biochemical reactions involved in pterin-dependent methyl synthesis of the modern acetyl-CoA pathway are considered. The following compounds appear as probable candidates for central involvement in prebiotic chemistry: metal sulphides, formate, carbon monoxide, methyl sulphide, acetate, formyl phosphate, carboxy phosphate, carbamate, carbamoyl phosphate, acetyl thioesters, acetyl phosphate, possibly carbonyl sulphide and eventually pterins. Carbon might have entered early metabolism via reactions hardly different from those in the modern Wood-Ljungdahl pathway, the pyruvate synthase reaction and the incomplete reverse citric acid cycle. The key energy-rich intermediates were perhaps acetyl thioesters, with acetyl phosphate possibly serving as the universal metabolic energy currency prior to the origin of genes. Nitrogen might have entered metabolism as geochemical NH3 via two routes: the synthesis of carbamoyl phosphate and reductive transaminations of alpha-keto acids. Together with intermediates of methyl synthesis, these two routes of nitrogen assimilation would directly supply all intermediates of modern purine and pyrimidine biosynthesis. Thermodynamic considerations related to formyl pterin synthesis suggest that the ability to harness a naturally pre-existing proton gradient at the vent-ocean interface via an ATPase is older than the ability to generate a proton gradient with chemistry that is specified by genes.  相似文献   

20.
Lake Matano, Indonesia, is a stratified anoxic lake with iron‐rich waters that has been used as an analogue for the Archean and early Proterozoic oceans. Past studies of Lake Matano report large amounts of methane production, with as much as 80% of primary production degraded via methanogenesis. Low δ13C values of DIC in the lake are difficult to reconcile with this notion, as fractionation during methanogenesis produces isotopically heavy CO2. To help reconcile these observations, we develop a box model of the carbon cycle in ferruginous Lake Matano, Indonesia, that satisfies the constraints of CH4 and DIC isotopic profiles, sediment composition, and alkalinity. We estimate methane fluxes smaller than originally proposed, with about 9% of organic carbon export to the deep waters degraded via methanogenesis. In addition, despite the abundance of Fe within the waters, anoxic ferric iron respiration of organic matter degrades <3% of organic carbon export, leaving methanogenesis as the largest contributor to anaerobic organic matter remineralization, while indicating a relatively minor role for iron as an electron acceptor. As the majority of carbon exported is buried in the sediments, we suggest that the role of methane in the Archean and early Proterozoic oceans is less significant than presumed in other studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号