首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
To determine the evolutionary positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia, we obtained 18S rRNA sequences from 11 new taxa representing the major living orders and families of gymnosperms. With the published Chlamydomonas as an outgroup, phylogenetic analyses of our new data and available sequences indicate that (1) the Gnetales form a monophyletic group, which is an outgroup to the conifers, (2) the conifers are monophyletic, (3) Taxaceae, Cephalotaxaceae, Cupressaceae, and Taxodiaceae form a monophyletic group, (4) Amentotaxus is closer to Torreya than to Cephalotaxus, suggesting that Amentotaxus is better to be classified as a member of Taxaceae, (5) Phyllocladus, Dacrycarpus, Podocarpus, and Nageia form a monophyletic group, and (6) Pinaceae is an outgroup to the other families of conifers. Our finding that Phyllocladus is a sister group of the Podocarpaceae disagrees with the suggestion that the phylloclade of the genus is an ancient structure and that the genus is a terminal taxon within the Podocarpaceae. The genus Nageia is more closely related to Podocarpus than to Dacrycarpus and was derived from within the Podocarpaceae. In conclusion, our data indicate that in conifers, the uniovulate cone occurred independently in Taxacaeae and Cephalotaxaceae, and in Podocarpaceae after the three families separated from Pinaceae, and support the hypothesis that the uniovulate cone is derived from reduction of a multiovulate cone.Correspondence to: S.-M. Chaw  相似文献   

2.
Despite considerable recent progress in understanding intergeneric relationships, a comprehensive analysis of Podocarpaceae at the species level using molecular data, biogeography, anatomy, and morphology has not been previously attempted. Here we present sequence analyses of rbcL, nrITS1 and NEEDLY intron 2 for two‐thirds (183 accessions of 145 taxa) of all Podocarpaceae species representing all genera except Parasitaxus. These analyses include many more species and accessions than previous studies and result in a more resolved phylogeny. The comprehensive anatomical and morphological study ensures that the identification of taxa is correct and also provides clade support. Bayesian and parsimony analyses were used to resolve 20 well‐supported monophyletic groups including 11 groups of the formerly poorly resolved subgenera Podocarpus and Foliolatus. The well‐resolved topology is supported by anatomical and morphological features and is highly congruent with geographical distribution. © The Willi Hennig Society 2011.  相似文献   

3.
The intrasubfamilial classification of Microdontinae Rondani (Diptera: Syrphidae) has been a challenge: until recently more than 300 out of more than 400 valid species names were classified in Microdon Meigen. We present phylogenetic analyses of molecular and morphological characters (both separate and combined) of Microdontinae. The morphological dataset contains 174 characters, scored for 189 taxa (9 outgroup), representing all 43 presently recognized genera and several subgenera and species groups. The molecular dataset, representing 90 ingroup species of 28 genera, comprises sequences of five partitions in total from the mitochondrial gene COI and the nuclear ribosomal genes 18S and 28S. We test the sister‐group relationship of Spheginobaccha with the other Microdontinae, attempt to elucidate phylogenetic relationships within the Microdontinae and discuss uncertainties in the classification of Microdontinae. Trees based on molecular characters alone are poorly resolved, but combined data are better resolved. Support for many deeper nodes is low, and placement of such nodes differs between parsimony and Bayesian analyses. However, Spheginobaccha is recovered as highly supported sister group in both. Both analyses agree on the early branching of Mixogaster, Schizoceratomyia, Afromicrodon and Paramicrodon. The taxonomical rank in relation to the other Syrphidae is discussed briefly. An additional analysis based on morphological characters only, including all 189 taxa, used implied weighting. A range of weighting strengths (k‐values) is applied, chosen such that values of character fit of the resulting trees are divided into regular intervals. Results of this analysis are used for discussing the phylogenetic relationships of genera unrepresented in the molecular dataset.  相似文献   

4.
The present paper deals with the embryological study and the systematic position of Amentotaxus argotaenia (Hance) Pilger. The material used was collected during 1980-1981 from Jin-fo Shan, 1400-1600 m, Sichuan Province, China. The species is dioecious. The male cone sheds its pollen during the period from the end of May to the middle of June. The pollen at mature stage is 2-celled. Pollen chamber appears obvious at the end of the nucellus. When pollen grains are dispersed, megaspore mother cell, which is situated deep in the nucellus, is in meiosis. The megaspore divides mitotically after pollination and the free nuclei of female gametophyte divide for the last time at the end of June. The wall formation takes place at the stage of 256 free nuclei. The development of archegonia takes place at the beginning of July and the fertilization occurs about July 20-23. The fertilized egg divides successively four times and results in a 16-nucleate proembryo. The young embryo is developing in August. It is interesting to note that the development of the young embryo is very slow. When the seed reaches the mature stage from June to July in the following year, the multicellular masses of the young embryos resulted from simple polyembryony remain immature within the female gametophyte. No cleavage polyembryony has been found. The subsequent embryogeny takes place after the seed has shed. Keng (1975) considers that Amentotaxus links the Taxaceae with Cephalotaxaceae. Our embryological data support Keng’s conclusion since they share (1) compound microstrobilus, (2) 2-celled pollen grains at shedding stage and (3) the rather long life cycle. Keng (1975) also mentions that Podocarpaceae may connect with Taxaceae through Phyllocladus. According to Keng the Podocarpaceae is related to Taxaceae to certain degree. It is obvious that the primitive spike-like male strobilus like the one in Cordaitales is obviously retained in Podocarpus spicatus and P. andinus of Podocarpaceae and Amentotaxus of Taxaceae. In addition, like in Amentotaxus there are 16 nuclei before wall formation in the proembryo of Podocarpus nivalis. These facts may well indicate that at least the Podocarpaceae and the Taxaceae were derived from a common stock. As far as the Taxaceae is concerned the authors tend to support the view of Koidzumi (1932) that Amentotaxus and Austrotaxus should be put in the same tribe since both possess the spike-like strobilus, the long life cycle and the seed maturation in the following year. They are probably rather primitive genera in the Taxaceae. The proembryogeny of Torreya is more or less specialized. It may be placed in a rather advanced tribe and the tribe Taxeae (including Taxus and Pseudotaxus)may be between the above two tribes. In conclusion, the Taxaceae is related to the Coniferales in certain respects and, as Keng (1975), Harri (1976) and Wang et al. (1979) have pointed out recently, placing of the Taxaceae in Coniferales is rather justifiable.  相似文献   

5.
The monophyly of the Peltophorum group, one of nine informal groups recognized by Polhill in the Caesalpinieae, was tested using sequence data from the trnL-F, rbcL, and rps16 regions of the chloroplast genome. Exemplars were included from all 16 genera of the Peltophorum group, and from 15 genera representing seven of the other eight informal groups in the tribe. The data were analyzed separately and in combined analyses using parsimony and Bayesian methods. The analysis method had little effect on the topology of well-supported relationships. The molecular data recovered a generally well-supported phylogeny with many intergeneric relationships resolved. Results show that the Peltophorum group as currently delimited is polyphyletic, but that eight genera plus one undescribed genus form a core Peltophorum group, which is referred to here as the Peltophorum group sensu stricto. These genera are Bussea, Conzattia, Colvillea, Delonix, Heteroflorum (inedit.), Lemuropisum, Parkinsonia, Peltophorum, and Schizolobium. The remaining eight genera of the Peltophorum group s.l. are distributed across the Caesalpinieae. Morphological support for the redelimited Peltophorum group and the other recovered clades was assessed, and no unique synapomorphy was found for the Peltophorum group s.s. A proposal for the reclassification of the Peltophorum group s.l. is presented.  相似文献   

6.
Snakes of the subfamily Boinae are found in Madagascar, the Papuan-Pacific Islands, and the Neotropics. It has been suggested that genera within each of these particular areas do not form monophyletic groups. Further, it was proposed that the New World Boa constrictor is more closely related to boine genera in Madagascar than to boines in the Neotropics. Along with inferring the relationship of all boine genera using data from the cytochrome b gene and morphology, the placement of Boa was also examined. Phylogenetic inferences using maximum likelihood and Bayesian (BI) methods for combined data analyses and separate analyses of DNA sequence and morphological data were conducted. Priors, parametric bootstraps, and the Shimodaira-Hasegawa test were used to examine the previously proposed placement of Boa with Madagascan taxa using these DNA data. DNA data and combined data analyses strongly reject the hypothesis that Boa is more closely related to Old World genera than to other New World genera. Additionally, strong tree support suggests that all species within Madagascar, the Papuan-Pacific Islands, and the Neotropics each form a monophyletic group with respect to their geographic region.  相似文献   

7.
Recent advances in molecular systematics of the ferns make it possible to address long-standing questions about classification of the major fern genera, such as the worldwide genus Polystichum (Dryopteridaceae), comprising at least 200 species. In this study we examined rbcL sequences and morphological characters from 55 fern taxa: 34 were from Polystichum and 21 were from other genera in the Dryopteridaceae. We found that Phanerophlebia, possibly including Polystichopsis, is the sister group to Polystichum sensu lato (s.l.), including Cyrtomium. Polystichum as commonly recognized is paraphyletic. Our results lead us to suggest recognizing the clade of earliest diverging Polystichum species as a distinct genus (Cyrtomidictyum) and to continue to recognize Cyrtomium as a separate genus, leaving a monophyletic Polystichum sensu stricto (s.s.). We resolved a tropical American clade and an African clade within Polystichum s.s. However, the resemblance between the once-pinnate, bulb-bearing calciphilic species found in Asia and the West Indies appears to be the result of convergent evolution. Optimizing our morphological character transformations onto the combined phylogeny suggests that the common ancestor of Polystichum s.l. and Phanerophlebia had evolved the common features of the alliance, including ciliate petiole-base scales, once-pinnate fronds, ultimate segments with scarious tips, peltate indusia, and microscales.  相似文献   

8.
Phylogenetic analysis of the globally distributed arboreal leafhopper subfamily Eurymelinae was conducted based on DNA sequence data from three nuclear and two mitochondrial genes in addition to 86 discrete morphological characters. The analysis included 89 species representing 61 genera from all major biogeographic regions including six species from outgroups, Megophthalminae and Ulopinae. Trees resulting from partitioned Bayesian and maximum likelihood analyses of the combined data were well resolved and largely congruent, differing mainly in the relationships among the earliest diverging lineages. The results are consistent with an expanded concept of Eurymelinae, including tribes Austroagalloidini and Macropsini. Six monophyletic groups are recognized as new tribes, Balocerini, Chiasmodolini, Chileanoscopini, Idioceroidini, Kopamerrini and Nesocerini, tribe n. , and the previously recognized tribes Eurymelini, Idiocerini and Megipocerini are redefined. A new synonym, Busonini Zhang & Li, 2015 syn.n. is proposed here for Megipocerini Isaev, 1988. Molecular divergence time estimates were calibrated using two fossil taxa and suggested that the earliest divergences occurred in the Lower Cretaceous and that most major lineages of this group arose during the Cretaceous. Reconstruction of ancestral areas revealed considerable continental-scale biogeographical structure. The place of origin of Eurymelinae is equivocal but major lineages arose in the Neotropical, Australian and Afrotropical regions. A key to tribes and a checklist of genera showing current tribal placements are provided.  相似文献   

9.
Molecular phylogeny of the green lacewings (Neuroptera: Chrysopidae)   总被引:1,自引:0,他引:1  
Abstract  The first quantitative analysis of phylogenetic relationships of green lacewings (Chrysopidae) is presented based on DNA sequence data. A single nuclear and two mitochondrial genes are used in the analysis: carbomoylphosphate synthase (CPS) domain of carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) (i.e. rudimentary locus), large subunit ribosomal gene (16S) and cytochrome oxidase I (COI). This study represents the first use of the CAD gene to investigate phylogenetic relationships of the lacewings. DNA sequences for 33 chrysopid species from 18 genera, representing all subfamilies and tribes, were compared with outgroups sampled from families Hemerobiidae, Osmylidae and Polystoechotidae. Parsimony analyses of the combined data set recovered all of the previously established subfamilial and tribal groups as monophyletic clades (although relatively weakly supported) except Apochrysinae sensu lato . The enigmatic Nothancyla verreauxi Navás has historically been difficult to place in a subfamily group based on morphological characteristics; molecular data presented herein do not adequately resolve this problem.  相似文献   

10.
A phylogenetic analysis of Passifloraceae sensu lato was performed using rbcL, atpB, matK, and 18S rDNA sequences from 25 genera and 42 species. Parsimony analyses of combined data sets resulted in a single most parsimonious tree, which was very similar to the 50% majority consensus tree from the Bayesian analysis. All nodes except three were supported by more than 50% bootstrap. The monophyly of Passifloraceae s.l. as well as the former families, Malesherbiaceae, Passifloraceae sensu stricto, and Turneraceae were strongly supported. Passifloraceae s.s. and the Turneraceae are sisters, and form a strongly supported clade. Within Passifloraceae s.s., the tribes Passifloreae and Paropsieae are both monophyletic. The intergeneric relationships within Passifloraceae s.s. and Turneraceae are roughly correlated with previous classification systems. The morphological character of an androgynophore/gynophore is better used for characterizing genera grouping within Passifloraceae s.s. Other morphological characters such as the corona and aril are discussed.  相似文献   

11.
Abstract. Homologies among traditional morphological characters in the Membracoidea ( sensu lato ) are reassessed and the phylogenetic relationships among higher membracoid taxa are explored, incorporating new morphological evidence from nymphs and adults. Weighted and unweighted parsimony analyses of a matrix of sixty–three characters and thirty-nine OTUs representing the families Aetalionidae, Cicadellidae, Melizoderidae and Membracidae, and an outgroup (superfamily Cercopoidea) yielded various topologies that were largely congruent but presented alternative hypotheses of relationships among the Membracidae. These analyses indicate that the superfamily consists of the following clades: Cicadellidae + (Melizoderidae + (Aetalionidae + Membracidae)). The family Membracidae, traditionally characterized by the presence of a posterior pronotal process, apparently gave rise to Nicomia Stål and other genera that lack this process.  相似文献   

12.
The orchid genus Maxillaria is one of the largest and most common of neotropical orchid genera, but its current generic boundaries and relationships have long been regarded as artificial. Phylogenetic relationships within subtribe Maxillariinae sensu Dressler (1993) with emphasis on Maxillaria s.l. were inferred using parsimony analyses of individual and combined DNA sequence data. We analyzed a combined matrix of nrITS DNA, the plastid matK gene and flanking trnK intron, and the plastid atpB-rbcL intergenic spacer for 619 individuals representing ca. 354 species. The plastid rpoC1 gene (ca. 2600 bp) was sequenced for 84 selected species and combined in a more limited analysis with the other data sets to provide greater resolution. In a well-resolved, supported consensus, most clades were present in more than one individual analysis. All the currently recognized minor genera of "core" Maxillariinae (Anthosiphon, Chrysocycnis, Cryptocentrum, Cyrtidiorchis, Mormolyca, Pityphyllum, and Trigonidium) are embedded within a polyphyletic Maxillaria s.l. Our results support the recognition of a more restricted Maxillaria, of some previously published segregate genera (Brasiliorchis, Camaridium, Christensonella, Heterotaxis, Ornithidium, Sauvetrea), and of several novel clades at the generic level. These revised monophyletic generic concepts should minimize further nomenclatural changes, encourage monographic studies, and facilitate more focused analyses of character evolution within Maxillariinae.  相似文献   

13.
The development of the microsporangium and male gametophyte of three species of Podocarpus was studied with light microscopy (LM) and the morphology of pollen with scanning and transmission electron microscopy (SEM and TEM). During early stages, the male cone is covered with coriaceous scales. The archesporid cells go through a dormant period. Later the pollen mother cells differentiate and undergo meiosis. Callose is detected around the tetrad and between each monad. The microspore nucleus divides several times to give rise to a multicellular gametophyte, which includes the tube cell, the stalk and body cells, and four prothallial cells. The exine of the pollen grain is rugulate in the corpus and quite smooth in the sacci. The ultrastructure of the pollen wall consists of the alveolate sexine, the laminate nexine I and the amorphous nexine II. The intine is very thin. Comparison of the mature grain of some fossils with living members of the Podocarpaceae reveals great similarity.  相似文献   

14.
The chloroplast mat-K region and rpL16 intron region were sequenced for 14 species of Schisandraceae, representing both genera Kadsura Kaempf. ex Juss. and Schisandra Michx, to discuss the phylogeny of this family. Analyses were performed both in separate and combined sequence data sets (including the rbc-L sequence), with Illicium angustispealum A. C. Smith as the out-group. The results showed that the Schisandraceae are monophyletic. In all the analyses, Schisandra propinqua var. chinensis Oliva and Schisandra plena A. C. Smith were nested within Kadsura, which implies that the genera Kadsura and Schisandra are closely related. They might have originated from a common ancestor, but then evolved via different routes. The result inferred from the combined data showed a greater resolution within Schisandra than those from the two separate data sets. High bootstrap values supported the monophyly of most subgenera according to Law's system (1996). A combination of morphological, anatomical, and chemical analyses indicates that S. chinensis and S. rubriflora may be the primitive taxa in Schisandra.  相似文献   

15.
This study gathered evidence from principal component analysis (PCA) of morphometric data and molecular analyses of nucleotide sequence data for four nuclear genes (28S, TpI, CAD1, and Wg) and two mitochondrial genes (COI and 16S), using parsimony, maximum likelihood, and Bayesian methods. This evidence was combined with morphological and chorological data to re-evaluate the taxonomic status of Nebria lacustris Casey sensu lato. PCA demonstrated that both body size and one conspicuous aspect of pronotal shape vary simultaneously with elevation, latitude, and longitude and served to distinguish populations from the southern Appalachian highlands, south of the French Broad, from all other populations. Molecular analyses revealed surprisingly low overall genetic diversity within Nebria lacustris sensu lato, with only 0.39% of 4605 bp varied in the concatenated dataset. Evaluation of patterns observed in morphological and genetic variation and distribution led to the following taxonomic conclusions: (1) Nebria lacustris Casey and Nebria bellorum Kavanaugh should be considered distinct species, which is a NEW STATUS for Nebria bellorum. (2) No other distinct taxonomic subunits could be distinguished with the evidence at hand, but samples from northeastern Iowa, in part of the region known as the "Driftless Zone", have unique genetic markers for two genes that hint at descent from a local population surviving at least the last glacial advance. (3) No morphometric or molecular evidence supports taxonomic distinction between lowland populations on the shores of Lake Champlain and upland populations in the adjacent Green Mountains of Vermont, despite evident size and pronotal shape differences between many of their members.  相似文献   

16.
Accurate classification systems based on evolution are imperative for biological investigations. The recent explosion of molecular phylogenetics has resulted in a much improved classification of angiosperms. More than five phylogenetic lineages have been recognized from Scrophulariaceae sensu lato since the family was determined to be polyphyletic; however, questions remain about the genera that have not been assigned to one of the segregate families of Scrophulariaceae s.l. Rehmannia Liboschitz and Triaenophora Solereder are such genera with uncertain familial placement. There also is debate whether Triaenophora should be segregated from Rehmannia. To evaluate the phylogenetic relations between Rehmannia and Triaenophora, to find their closest relatives, and to verify their familial placement, we conducted phylogenetic analyses of the sequences of one nuclear DNA (ITS) region and four chloroplast DNA gene regions (trnL-F, rps16, rbcL, and rps2) individually and combined. The analyses showed that Rehmannia and Triaenophora are each strongly supported as monophyletic and together are sister to Orobanchaceae. This relation was corroborated by phytochemical and morphological data. Based on these data, we suggest that Rehmannia and Triaenophora represent the second nonparasitic branch sister to the remainder of Orobanchaceae (including Lindenbergia).  相似文献   

17.
Observation of ovulate cones at the time of pollination in the southern coniferous family Podocarpaceae demonstrates a distinctive method of pollen capture, involving an extended pollination drop. Ovules in all genera of the family are orthotropous and single within the axil of each fertile bract. In Microstrobus and Phyllocladus ovules are erect (i.e., the micropyle directed away from the cone axis) and are not associated with an ovule-supporting structure (epimatium). Pollen in these two genera must land directly on the pollination drop in the way usual for gymnosperms, as observed in Phyllocladus. In all other genera, the ovule is inverted (i.e., the micropyle is directed toward the cone axis) and supported by a specialized ovule-supporting structure (epimatium). In Saxegothaea there is no pollination drop and gametes are delivered to the ovule by pollen tube growth. Pollination drops were observed in seven of the remaining genera. In these genera the drop extends over the adjacent bract surface or cone axis and can retain pollen that has arrived prior to drop secretion (“pollen scavenging”). The pollen floats upward into the micropylar cavity. The configuration of the cone in other genera in which a pollination drop has not yet been observed directly suggests that pollen scavenging is general within the family and may increase pollination efficiency by extending pollination in space and time. Increased pollination efficiency may relate to the reduction of ovule number in each cone, often to one in many genera, a derived condition. A biological perspective suggests that animal dispersal of large seeds may be the ultimate adaptive driving force that has generated the need for greater pollination efficiency.  相似文献   

18.
19.
Chloroplast trnL-F sequence data, nuclear ribosomal internal transcribed spacer (ITS) sequence data, and morphology were used to analyze phylogenetic relationships among members of the subtribe Strobilanthinae. Parsimony and maximum likelihood analyses of trnL-F indicate that the Strobilanthinae are a monophyletic group. While parsimony analysis of ITS recovers a nonmonophyletic subtribe, maximum likelihood analysis of ITS corroborates results from trnL-F and suggests that systematic error is impacting on ITS parsimony analysis. A combined ITS and trnL-F analysis strengthens the signal and also recovers a monophyletic subtribe. All analyses indicate that Hemigraphis, Sericocalyx, and Strobilanthes are nonmonophyletic. With one exception, all morphological characters included in a combined ITS and morphological analysis are homoplastic. The prospect for a new informative generic classification of the Strobilanthinae aiming to recognize and diagnose only monophyletic groups is considered. While some groups can be diagnosed, adequate diagnosis of the majority of groups remains problematic. Consequently, a single expanded genus Strobilanthes sensu lato is proposed at the level of the well-supported and monophyletic Strobilanthinae.  相似文献   

20.
Phylogenetic relationships among 95 genera collectively representing 17 of the 18 currently recognized cyclostome braconid wasp subfamilies were investigated based on DNA sequence fragments of the mitochondrial COI and the nuclear 28S rDNA genes, in addition to morphological data. The treatment of sequence length variation of the 28S partition was explored by either excluding ambiguously aligned regions and indel information (28SN) or recoding them (28SA) using the 'fragment-level' alignment method with a modified coding approach. Bayesian MCMC analyses were performed for the separate and combined data sets and a maximum parsimony analysis was also carried out for the simultaneous molecular and morphological data sets. There was a significant incongruence between the two genes and between 28S and morphology, but not for morphology and COI. Different analyses with the 28SA data matrix resulted in topologies that were generally similar to the ones from the 28SN matrix; however, the former topologies recovered a higher number of significantly supported clades and had a higher mean Bayesian posterior probability, thus supporting the inclusion of information from ambiguously aligned regions and indel events in phylogenetic analyses where possible. Based on the significantly supported clades obtained from the simultaneous molecular and morphological analyses, we propose that a total of 17 subfamilies should be recognized within the cyclostome group. The subfamilial placements of several problematic cyclostome genera were also established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号