首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
虫瘿多样性及其与寄主植物和环境间关系   总被引:1,自引:0,他引:1  
虫瘿是自然界极常见的生物现象,凝聚着昆虫与植物间显著、复杂而密切的协同关系。本文主要阐述了致瘿昆虫的主要类群及其在植物上的致瘿部位、虫瘿外部形态、虫瘿发育过程、虫瘿内部结构、虫瘿寄主植物多样性以及虫瘿空间分布规律等,探讨了致瘿昆虫和寄主植物间相互关系,以及影响虫瘿空间分布的环境因素等。最后对目前虫瘿生物学存在的问题及以后的研究方向进行了讨论,以期为有害虫瘿的控制和有益虫瘿的开发与利用,以及致瘿昆虫与寄主植物间协同演化关系、致瘿昆虫的致瘿机理等研究奠定一定的理论基础。  相似文献   

2.
Abstract.  1. The strength or density dependence of pairwise species interactions can depend on the presence or absence of other species, especially potential mutualists.
2. The gall wasp Disholcaspis eldoradensis induces plant galls that secrete a sweet honeydew from their top surfaces while the wasp larvae are active. These galls are actively tended by Argentine ants, which collect the honeydew and drive off parasitoids attempting to attack the gall wasp.
3. When ants were excluded, the total rate of parasitism by seven species of parasitoids increased by 36%, and the rate of gall-wasp emergence decreased by 54%.
4. The total percentage parasitism was affected by gall density when ants were excluded but not when ants were unmanipulated, suggesting a change in parasitoid functional responses due to ant tending.
5. In addition, excluding ants significantly altered the proportions of different parasitoid species that emerged from galls; one parasitoid species increased from 1% to 34%, and another decreased from 46% to 19%.
6. The invasive Argentine ants studied are capable of maintaining the mutualism with the gall wasps that evolved in the presence of different ant species and also act as a selective filter for the local community of generalist parasitoids trying to attack this gall species.  相似文献   

3.
4.
1. The megadiverse herbivores and their host plants are a major component of biodiversity, and their interactions have been hypothesised to drive the diversification of both. 2. If plant diversity influences the diversity of insects, there is an expectation that insect species richness will be strongly correlated with host‐plant species richness. This should be observable at two levels (i) more diverse host‐plant groups should harbour more species of insects, and (ii) the species richness of a group of insects should correlate with the richness of the host groups it uses. However, such a correlation is also consistent with a hypothesis of random host use, in which insects encounter and use hosts in proportion to the diversity of host plants. Neither of these expectations has been widely tested. 3. These expectations were tested using data from a species‐rich group of insects – the Coccidae (Hemiptera). 4. Significant positive correlations were found between the species richness of coccid clades (genera) and the species richness of the host‐plant family or families upon which the clades occur. On a global scale, more closely related plant families have more similar communities of coccid genera but the correlation is weak. 5. Random host use could not be rejected for many coccids but randomisation tests and similarity of coccid communities on closely related plant families show that there is non‐random host use in some taxa. Overall, our results support the idea that plant diversity is a driver of species richness of herbivorous insects, probably via escape‐and‐radiate or oscillation‐type processes.  相似文献   

5.
Riley EM  Viney ME 《Molecular ecology》2011,20(23):4827-4829
The immune system has evolved, and continues to evolve, in response to the selection pressure that infections exert on animals in their natural environments, yet much of our understanding about how the immune system functions comes from studies of model species maintained in the almost complete absence of such environmental selection. The scientific discipline of immunology has among its aims the improvement of human and animal health by the application of immunological knowledge. As research on humans and domesticated animals is highly constrained-ethically, logistically and financially-experimental animal models have become an invaluable tool for dissecting the functioning of the immune system. The house mouse (Mus musculus) is by far the most widely used animal model in immunological research but laboratory-reared mice provide a very narrow view of the immune system-that of a well-fed and comfortably housed animal with minimal exposure to microbial pathogens. Indeed, so much of our immunological knowledge comes from studies of a very few highly inbred mouse strains that-to all intents and purposes-our immunological knowledge is based on enormously detailed studies of very small numbers of individual mice. The limitations of studies in inbred strains of laboratory mice are well-recognized (Pedersen & Babayan 2011), but serious attempts to address these limitations have been few and far between. However, the emerging field of 'ecological immunology' where free-living populations are studied in their natural habitat is beginning to redress this imbalance (Viney et al. 2005; Martin et al. 2006; Owen et al. 2010; Abolins et al. 2011). As demonstrated in the work by Boysen et al. (2011) in this issue of Molecular Ecology, studies in wild animal populations-especially free-living M. musculus-represent a valuable bridge between studies in humans and livestock and studies of captive animals.  相似文献   

6.
Despite the increasing rate of urbanization, the consequences of this process on biotic interactions remain insufficiently studied. Our aims were to identify the general pattern of urbanization impact on background insect herbivory, to explore variations in this impact related to characteristics of both urban areas and insect–plant systems, and to uncover the factors governing urbanization impacts on insect herbivory. We compared the foliar damage inflicted on the most common trees by defoliating, leafmining and gall‐forming insects in rural and urban habitats associated with 16 European cities. In two of these cities, we explored quality of birch foliage for herbivorous insects, mortality of leafmining insects due to predators and parasitoids and bird predation on artificial plasticine larvae. On average, the foliage losses to insects were 16.5% lower in urban than in rural habitats. The magnitude of the overall adverse effect of urbanization on herbivory was independent of the latitude of the locality and was similar in all 11 studied tree species, but increased with an increase in the size of the urban area: it was significant in large cities (city population 1–5 million) but not significant in medium‐sized and small towns. Quality of birch foliage for herbivorous insects was slightly higher in urban habitats than in rural habitats. At the same time, leafminer mortality due to ants and birds and the bird attack intensity on dummy larvae were higher in large cities than in rural habitats, which at least partially explained the decline in insect herbivory observed in response to urbanization. Our findings underscore the importance of top‐down forces in mediating impacts of urbanization on plant‐feeding insects: factors favouring predators may override the positive effects of temperature elevation on insects and thus reduce plant damage.  相似文献   

7.
8.
Stem galls affect oak foliage with potential consequences for herbivory   总被引:1,自引:0,他引:1  
Abstract.   1. On two dates, foliar characteristics of pin oak, Quercus palustris , infested with stem galls caused by the horned oak gall, Callirhytis cornigera , were investigated, and the consequences for subsequent herbivory assessed.
2. Second-instar caterpillars of the gypsy moth, Lymantria dispar , preferred foliage from ungalled trees.
3. Ungalled trees broke bud earlier than their galled counterparts.
4. Galled trees produced denser leaves with higher nitrogen and tannin concentrations, but foliar carbohydrates did not differ among galled and ungalled trees.
5. Concentrations of foliar carbohydrates in both galled and ungalled trees increased uniformly between the two assay dates. Nitrogen concentrations were greater in leaves from galled trees, and decreased uniformly in galled and ungalled trees over time. Foliar tannins were also greater in foliage from galled trees early in the season; however, foliar tannins declined seasonally in galled tissue so that by the second assay date there was no difference in tannin concentrations between galled and ungalled foliage.
6. In spite of differences in foliar characteristics, performance of older, fourth instar gypsy moth caterpillars did not differ between galled and ungalled trees.  相似文献   

9.
Current methods for measuring similarity among phytophagous insect communities fail to consider the phylogenetic relationship between host plants. We analysed this relation based on 3580 host observations of 1174 beetle species associated with 100 species of angiosperms in two different forest types in Panama. We quantified the significance of genetic distance as well as taxonomic rank among angiosperms in relation to species overlap in beetle assemblages. A logarithmic model describing the decrease in beetle species similarity between host-plant species of increasing phylogenetic distance explains 35% of the variation. Applied to taxonomic rank categories the results imply that except for the ancient branching of monocots from dicots, only adaptive radiations of plants on the family and genus level are important for host utilization among phytophagous beetles. These findings enable improvements in estimating host specificity and species richness through correction for phylogenetic relatedness between hosts and consideration of the host-specific fauna associated with monocots.  相似文献   

10.
Ecological interactions between plants and insects are of paramount importance for the maintenance of biodiversity and ecosystem functioning. Herbicides have long been considered a threat to plant and insect populations, but global increases in intensive agriculture and availability of herbicide-resistant crops have intensified concerns about their full impact on biodiversity. Here, we argue that exposure to sublethal herbicide doses has the potential to alter plant–insect interactions as a result of disruptions in their chemical communication. This is because herbicides interfere with biosynthetic pathways and phytohormones involved in the production of several classes of plant volatiles that mediate plant–insect chemical communication. Sublethal herbicide doses can modify the morphological and life-history plant traits and affect interactions with insects. However, the potential changes in plant volatiles and their consequences for plant–insect chemical communication have not yet received as much attention. We discuss how target-site (disruptors of primary metabolism) and non-target-site (synthetic auxins) herbicides could alter the production of plant volatiles and disrupt plant–insect chemical communication. We suggest research avenues to fill in the current gap in our knowledge that might derive recommendations and applied solutions to minimize herbicides' impacts on plant–insect interactions and biodiversity.  相似文献   

11.
It has been shown that plant biomass–density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass–density relationships is a direct result of stress tolerance or occurs via changes in plant–plant interactions. Here, we evaluated biomass–density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass–density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass–density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass–density relationships. Our results support the hypothesis that differences in biomass–density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant–plant interactions.  相似文献   

12.
13.
  1. A preference experiment was set up with two planthopper species (Hemiptera: Delphacidae) to test the influence of competition on host plant choice.
  2. The delphacid Javesella pellucida was chosen as a generalist and the rarer Ribautodelphax imitans as a monophagous specialist, which feeds on the grass, tall fescue Schedonorus arundinaceus.
  3. In the absence of the specialist, the generalist showed a marked preference for tall fescue. In some experiments, however, the introduction of the specialist resulted in a shift of preference to an alternative plant if the specialist was established prior to the introduction of the generalist.
  4. This experiment supports the hypothesis that specialist herbivores can potentially alter the host plant choices of generalists, which may lead to differing host plant use patterns in insect communities.
  相似文献   

14.
15.
Plant-mediated soil legacy effects can be important determinants of the performance of plants and their aboveground insect herbivores, but, soil legacy effects on plant–insect interactions have been tested for only a limited number of host plant species and soils. Here, we tested the performance of a polyphagous aboveground herbivore, caterpillars of the cabbage moth Mamestra brassicae, on twelve host plant species that were grown on a set of soils conditioned by each of these twelve species. We tested how growth rate (fast- or slow-growing) and functional type (grass or forb) of the plant species that conditioned the soil and of the responding host plant species growing in those soils affect the response of insect herbivores to conditioned soils. Our results show that plants and insect herbivores had lower biomass in soils that were conditioned by fast-growing forbs than in soils conditioned by slow-growing forbs. In soils conditioned by grasses, growth rate of the conditioning plant had the opposite effect, i.e. plants and herbivores had higher biomass in soils conditioned by fast-growing grasses, than in soils conditioned by slow-growing grasses. We show that the response of aboveground insects to soil legacy effects is strongly positively correlated with the response of the host plant species, indicating that plant vigour may explain these relationships. We provide evidence that soil communities can play an important role in shaping plant–insect interactions aboveground. Our results further emphasize the important and interactive role of the conditioning and the response plant in mediating soil–plant–insect interactions.  相似文献   

16.
Entomopathogenic nematodes are natural enemies and effective biological control agents of subterranean insect herbivores. Interactions between herbivores, plants, and entomopathogenic nematodes are mediated by plant defense pathways. These pathways can induce release of volatiles and recruit entomopathogenic nematodes. Stimulation of these plant defense pathways for induced defense against belowground herbivory may enhance biological control in the field. Knowledge of the factors affecting entomopathogenic nematode behaviour belowground is needed to effectively implement such strategies. To that end, we explore the effect of elicitor, elicitor dose, mechanical damage, and entomopathogenic nematode release distance on recruitment of entomopathogenic nematode infective juveniles to corn seedlings. Increasing doses of methyl jasmonate and methyl salicylate elicitors recruited more entomopathogenic nematodes as did mechanical damage. Recruitment of entomopathogenic nematodes was higher at greater release distances. These results suggest entomopathogenic nematodes are highly tuned to plant status and present a strategy for enhancing biological control using elicitor-stimulated recruitment of entomopathogenic nematodes.  相似文献   

17.
18.
Interactions are key drivers of the functioning and fate of plant communities. A traditional way to measure them is to use pairwise experiments, but such experiments do not scale up to species-rich communities. For those, using association networks based on spatial patterns may provide a more realistic approach. While this method has been successful in abiotically-stressed environments (alpine and arid ecosystems), it is unclear how well it generalizes to other types of environments. We help fill this knowledge gap by documenting how the structure of plant communities changes in a Mediterranean dry grassland grazed by sheep using plant spatial association networks. We investigated how the structure of these networks changed with grazing intensity to show the effect of biotic disturbance on community structure. We found that these grazed grassland communities were mostly dominated by negative associations, suggesting a dominance of interference over facilitation regardless of the disturbance level. The topology of the networks revealed that the number of associations were not evenly-distributed across species, but rather that a small subset of species established most negative associations under low grazing conditions. All these aspects of spatial organization vanished under high level of grazing as association networks became more similar to null expectations. Our study shows that grazed herbaceous plant communities display a highly non-random organization that responds strongly to disturbance and can be measured through association networks. This approach thus appears insightful to test general hypotheses about plant communities, and in particular understand how anthropogenic perturbations affect the organization of ecological communities.  相似文献   

19.
Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.  相似文献   

20.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号