首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Additive effects of Na+ and Cl- ions on barley growth under salinity stress   总被引:3,自引:0,他引:3  
Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.  相似文献   

2.
The interaction between soil drying and salinity was studied in the perennial halophyte, Sesuvium portulacastrum. Rooted cuttings were individually cultivated for three months in silty-sandy soil under two irrigation modes: 100 and 25% of field capacity (FC). The amount of the evapotranspirated water was replaced by a nutrient solution containing either 0 or 100 mM NaCl. Whole-plant growth, leaf water content, leaf water potential (Psi(w)), and Na+, K+, and proline concentrations in the tissues were measured. When individually applied, both drought and salinity significantly restricted whole-plant growth, with a more marked effect of the former stress. However, the effects of the two stresses were not additive on whole-plant biomass or on leaf expansion. Root growth was more sensitive to salt than to soil drying, the latter being even magnified by the adverse impact of salinity. Leaf water content was significantly reduced following exposure to water-deficit stress, but was less affected in salt-treated plants. When simultaneously submitted to water-deficit stress and salinity, plants displayed higher values of water and potassium use efficiencies, leaf proline and Na+ concentrations, associated with lower leaf water potential (-1.87 MPa), suggesting the ability of S. portulacastrum to use Na+ and proline for osmotic adjustment.  相似文献   

3.
Li J  Bao S  Zhang Y  Ma X  Mishra-Knyrim M  Sun J  Sa G  Shen X  Polle A  Chen S 《Plant physiology》2012,159(4):1771-1786
Salt-induced fluxes of H(+), Na(+), K(+), and Ca(2+) were investigated in ectomycorrhizal (EM) associations formed by Paxillus involutus (strains MAJ and NAU) with the salt-sensitive poplar hybrid Populus × canescens. A scanning ion-selective electrode technique was used to measure flux profiles in non-EM roots and axenically grown EM cultures of the two P. involutus isolates to identify whether the major alterations detected in EM roots were promoted by the fungal partner. EM plants exhibited a more pronounced ability to maintain K(+)/Na(+) homeostasis under salt stress. The influx of Na(+) was reduced after short-term (50 mm NaCl, 24 h) and long-term (50 mm NaCl, 7 d) exposure to salt stress in mycorrhizal roots, especially in NAU associations. Flux data for P. involutus and susceptibility to Na(+)-transport inhibitors indicated that fungal colonization contributed to active Na(+) extrusion and H(+) uptake in the salinized roots of P. × canescens. Moreover, EM plants retained the ability to reduce the salt-induced K(+) efflux, especially under long-term salinity. Our study suggests that P. involutus assists in maintaining K(+) homeostasis by delivering this nutrient to host plants and slowing the loss of K(+) under salt stress. EM P. × canescens plants exhibited an enhanced Ca(2+) uptake ability, whereas short-term and long-term treatments caused a marked Ca(2+) efflux from mycorrhizal roots, especially from NAU-colonized roots. We suggest that the release of additional Ca(2+) mediated K(+)/Na(+) homeostasis in EM plants under salt stress.  相似文献   

4.
Comparative physiology of salt and water stress   总被引:73,自引:0,他引:73  
Plant responses to salt and water stress have much in common. Salinity reduces the ability of plants to take up water, and this quickly causes reductions in growth rate, along with a suite of metabolic changes identical to those caused by water stress. The initial reduction in shoot growth is probably due to hormonal signals generated by the roots. There may be salt-specific effects that later have an impact on growth; if excessive amounts of salt enter the plant, salt will eventually rise to toxic levels in the older transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot sustain growth. These effects take time to develop. Salt-tolerant plants differ from salt-sensitive ones in having a low rate of Na+ and Cl-- transport to leaves, and the ability to compartmentalize these ions in vacuoles to prevent their build-up in cytoplasm or cell walls and thus avoid salt toxicity. In order to understand the processes that give rise to tolerance of salt, as distinct from tolerance of osmotic stress, and to identify genes that control the transport of salt across membranes, it is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress.  相似文献   

5.
Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m−1), in low saline soil (EC = 5 dS m−1), and in a high saline soil (EC = 10 dS m−1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (−AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.  相似文献   

6.
The aims of this research were to test the influence of surface soil drying on photosynthesis, root respiration and grain yield of spring wheat (Triticum aestivum), and to evaluate the relationship between root respiration and grain yield. Wheat plants were grown in PVC tubes 120 cm in length and 10 cm in diameter. Three water regimes were employed: (a) all soil layers were irrigated close to field water capacity (CK); (b) upper soil layers (0–40 cm from top) drying (UD); (c) lower soil layer (80–120 cm from top) wet (LW). The results showed that although upper drying treatment maintained the highest root biomass, root respiration and photosynthesis rates at anthesis, the root respiration of the former was significantly (P < 0.05) lower than the latter at the jointing stage. There were no differences in water use efficiency or harvest index between plants from the upper drying and well-watered treatment. However, the grain weight for plants in the upper drying treatment was significantly (P< 0.05) higher than that of in well-watered control. The results suggest that reduced root respiration rate and the amount of photosynthates utilized by root respiration in early season growth may also have contributed to improve crop production under soil drying. Reduced root activity and root respiration rate, in the early growth stage, not only increased the photosynthate use efficiency (root respiration rate: photosynthesis ratio), but also grain yield. Rooting into a deeper wet soil profile before grain filling was crucial for spring wheat to achieve a successful seedling establishment and high grain yield.  相似文献   

7.
Salinity represents an increasing environmental problem in managed ecosystems. Populus spp. is widely used for wood production by short-rotation forestry in fertilized plantations and can be grown on saline soil. Because N fertilization plays an important role in salt tolerance, we analysed Grey poplar (Populus tremula x alba, syn. Populus canescens) grown with either 1 mM nitrate or ammonium subjected to moderate 75 mM NaCl. The impact of N nutrition on amelioration of salt tolerance was analysed on different levels of N metabolism such as N uptake, assimilation and N (total N, proteins and amino compounds) accumulation. Na concentration increased in all tissues over time of salt exposure. The N nutrition-dependent effects of salt exposure were more intensive in roots than in leaves. Application of salt reduced root increment as well as stem height increase and, at the same time, increased the concentration of total amino compounds more intensively in roots of ammonium-fed plants. In leaves, salt treatment increased concentrations of total N more intensively in nitrate-fed plants and concentrations of amino compounds independently of N nutrition. The major changes in N metabolism of Grey poplar exposed to moderate salt concentrations were detected in the significant increase of amino acid concentrations. The present results indicate that N metabolism of Grey poplar exposed to salt performed better when the plants were fed with nitrate instead of ammonium as sole N source. Therefore, nitrate fertilization of poplar plantations grown on saline soil should be preferred.  相似文献   

8.
The growth response of endophyte-infected (EI) and endophyte-free (EF) tall fescue to salt stress was investigated under two growing systems (hydroponic and soil in pots). The hydroponic experiment showed that endophyte infection significantly increased tiller and leaf number, which led to an increase in the total biomass of the host grass. Endophyte infection enhanced Na accumulation in the host grass and improved Na transport from the roots to the shoots. With a 15 g l?1 NaCl treatment, the phytoextraction efficiency of EI tall fescue was 2.34-fold higher than EF plants. When the plants were grown in saline soils, endophyte infection also significantly increased tiller number, shoot height and the total biomass of the host grass. Although EI tall fescue cannot accumulate Na to a level high enough for it to be termed a halophyte, the increased biomass production and stress tolerance suggested that endophyte / plant associations had the potential to be a model for endophyte-assisted phytoextraction in saline soils.  相似文献   

9.
宁夏平原北部引黄灌区地下水埋深浅是该地区土壤盐碱化的主要原因, 种植耐盐植物可以吸收利用地下水, 在降低地下水位的同时可以减少对地面灌溉的依赖。为了分析银川平原北部4种灌木对不同水源的利用特征, 于2010年生长季测定了灌溉前后20年生多枝柽柳(Tamarix ramosissima)、3年生多枝柽柳、3年生宁夏枸杞(Lycium barbarum)和3年生四翅滨藜(Atriplex canescens)木质部水及不同潜在水源稳定氧、氢同位素组成(δ18O和δD), 应用IsoSource同位素线性混合模型估算了不同灌木对不同水源的利用率。同时测定了0-200 cm土壤剖面的全盐含量、含水量和pH值以及灌溉前后光合气体交换参数。结果表明: 不同深度土壤水δ18O和δD值存在较大差异, 并呈规律性变化。土壤水δ18O和δD值随深度加深呈逐渐降低的趋势。灌溉后80 cm以上土壤水δ18O和δD值低于灌溉前。无论灌溉前还是灌溉后, 20年生多枝柽柳与3年生灌木相比具有更低的δ18O和δD值。灌溉前, 3年生多枝柽柳、宁夏枸杞和四翅滨藜主要利用表层土壤水(70.1%、52.3%和48.9%); 20年生多枝柽柳对地下水的利用率最高(21.5%)。灌溉后, 3年生多枝柽柳和宁夏枸杞对80-140 cm土壤水利用率较高(59.5%和58.8%)。20年生多枝柽柳对地下水的利用率最高(18.3%)。灌溉前, 20年生多枝柽柳净光合速率、气孔导度和蒸腾速率显著高于其他3种灌木, 灌溉后3年生四翅滨藜净光合速率最高。灌溉对3年生多枝柽柳和宁夏枸杞的净光合速率和气孔导度有显著影响。无论灌溉前还是灌溉后, 3年生四翅滨藜瞬间水分利用效率均高于其他3种灌木。研究表明, 不同灌木在不同水分条件下水分利用策略不同, 这主要与植物种类及树龄有关。灌溉前幼龄多枝柽柳凭借其对干旱较强的忍耐能力利用浅层不饱和土壤水, 灌溉后其又转而利用中层土壤水, 表现出潜水湿生植物的特征, 主要吸收利用深层土壤水分, 对灌溉反应不明显。  相似文献   

10.
AaNhaD,a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica,encodes a Na+/H+ antiporter crucial for the bacterium’s resistance to salt/alkali stresses.However,it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses.To investigate the use of extremophile genetic resources in higher plants,transgenic tobacco BY-2 cells and plants harboring AaNhaD were generated and their stress tolerance was evaluated.Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner.Compared to wild-type controls,the transgenic cells exhibited increased Na+concentrations and pH levels in the vacuoles.Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts.Similar to the transgenic BY-2 cells,AaNhaD-overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil.These results indicate that AaNhaD functions as a pH-dependent tonoplast Na+/H+antiporter in plant cells,thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.  相似文献   

11.
12.
To understand the response patterns to soil drying and the water use properties of commonly reforested trees in the semiarid Loess Plateau region of China, a glasshouse experiment was carried out with the seedlings of four species, i.e., Robinia pseudoacacia, Armeniaca sibirica, Syringa oblata, and Quercus liaotungensis. Severe water stress induced by withholding water resulted in permanent wilting of most of the seedlings pot-cultured with sandy soil in 8–12 days. Predawn and midday leaf water potentials and gas exchange characteristics (e.g., stomatal conductance) in the seedlings did not show marked changes until the volumetric soil water content decreased to about 0.05. As the soil water content decreased further, these physiological parameters rapidly declined, approaching their minimal levels at the stage of permanent wilting. The response of each parameter to soil water content changes was fitted with a non-linear saturation curve. Though the results suggested that the general pattern of responses to soil drying was identical among the species, quantitative differences in drought tolerance and water use properties were detected. Leaf stomatal conductance in R. pseudoacacia and A. sibirica showed earlier responses to reduced predawn leaf water potentials. However, water use characteristics and specific leaf area indicated that these two species consumed more water and may not be as drought tolerant as S. oblata and Q. liaotungensis. These results may provide important information to compare the reforestation species with respect to soil drying.  相似文献   

13.
Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na(+), Cl(-), and K(+) at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at EC(e) 7.2 [Spearman's rank correlation (rs)=0.79] and EC(e) 15.3 (rs=0.82) and the crucial parameter of leaf Na(+) (rs=0.72) and Cl(-) (rs=0.82) concentrations at EC(e) 7.2 dS m(-1). This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt tolerance in the tolerant genotypes and further field tests of these plants under stress conditions will help to verify their potential utility in crop-improvement programmes.  相似文献   

14.
Varietal differences in the toxicity of sodium ions in rice leaves   总被引:11,自引:0,他引:11  
The water relations and growth responses of an extreme halophyte, Salicornia virginica , and a common glycophyte, Raphanus sativus , were comparatively examined in a hydroponic growth experiment employing a broad range of salinities. Root conductivity (in growth solutions and distilled water), expressed sap osmolality, water use efficiency, relative growth rate, and salt uptake were the primary responses monitored. Salicornia responded to increasing salinity by decreasing root conductivity (in the growth solutions) and increasing salt uptake, while water use efficiency and growth rates were minimally affected. The inhibitory effects of salinity upon root conductivity were reversible in distilled water, and, importantly, the highest recovery rates were from plants grown in the moderate and high salinities. Salicornia displayed an enhanced ability to absorb water in distilled water following growth in solutions with elevated salinities. In contrast, Raphanus responded to comparatively small increases in growth solution salinity by drastically decreasing growth rates as well as root conductivity (in the growth solutions), while salt uptake and water use efficiency increased under the moderate salinity level. In Raphanus the inhibitory effects of increased salinity upon root conductivity were only partially reversible in distilled water, and the highest recovery rates were from plants grown in the low salinity Thus, once salinity stress was withdrawn, Raphanus exhibited a suppressed ability to move water through the roots. The results are discussed in the light of selected, commonly proposed mechanisms of salinity-induced growth inhibition.  相似文献   

15.
To investigate the physiological basis of salt adaptation in poplar, we compared the effect of salt stress on wood anatomy and auxin physiology of the salt-resistant Populus euphratica and salt-sensitive Populus x canescens. Both poplar species showed decreases in vessel lumina associated with increases in wall strength in response to salt, however, in P. euphratica at three-fold higher salt concentrations than in P. x canescens. The predicted hydraulic conductivity of the wood formed under salt stress decreased in P. x canescens, while in P. euphratica, no significant effects of salt on conductivity and transpiration were observed. The concentration of free indole-3-acetic acid (IAA) decreased under salt stress in the xylem of both poplar species, but to a larger extent in P. x canescens than in P. euphratica. Only salt-treated P. euphratica exhibited an increase in IAA-conjugates in the xylem. Genes homologous to the auxin-amidohydrolase ILL3 were isolated from the xylems of P. euphratica and P. x canescens. For functional analysis, the auxin-amidohydrolase from P. x canescens was overexpressed in Arabidopsis. Transgenic Arabidopsis plants were more resistant to salt stress than the wild-type plants. Increased sensitivity of the transgenic Arabidopsis to IAA-Leu showed that the encoded hydrolase used IAA-Leu as a substrate. These results suggest that poplar can use IAA-amidoconjugates in the stem as a source of auxin to balance the effects of salt stress on auxin physiology.  相似文献   

16.
Arbuscular mycorrhizal (AM) symbiosis can confer increased host resistance to drought stress, although the effect is unpredictable. Since AM symbiosis also frequently increases host resistance to salinity stress, and since drought and salinity stress are often linked in drying soils, we speculated that the AM influence on plant drought response may be partially the result of AM influence on salinity stress. We tested the hypothesis that AM-induced effects on drought responses would be more pronounced when plants of comparable size are exposed to drought in salinized soils. In two greenhouse experiments, several water relations characteristics were measured in sorghum plants colonized by Glomus intraradices (Gi), Gigaspora margarita (Gm) or a mixture of AM species, during a sustained drought following exposure to salinity treatments (NaCl stress, osmotic stress via concentrated macronutrients, or soil leaching). The presence of excess salt in soils widened the difference in drought responses between AM and nonAM plants in just two instances. Days required for plants to reach stomatal closure were similar for Gi and nonAM plants exposed to drought alone, but with exposure to combined NaCl and drought stress, stomates of Gi plants remained open 17-22% longer than in nonAM plants. Promotion of stomatal conductance by Gm occurred with exposure to NaCl/drought stress but not with drought alone or with soil leaching before drought. In other instances, however, the addition of salt tended to nullify an AM-induced change in drought response. Our findings confirm that AM fungi can alter host response to drought but do not lend much support to the idea that AM-induced salt resistance might help explain why AM plants can be more resilient to drought stress than their nonAM counterparts.  相似文献   

17.
In this study, adaptive features of Spinacia oleracea to different levels of salinity, its use in desalination and production of 20-Hydroxyecdysone were studied. Plants showed survival up to EC 12 dS/m with reduced growth as compared with control. Net photosynthesis rate, transpiration, stomatal conductance, and water use efficiency of salt treated plants declines with increasing salinity stress. Higher antioxidant enzyme activities and compatible solutes accumulation were observed in salt treated plants as function of osmotic adjustment. Significant Na+ sequestration and Na/K ratio were noted with increase in salt stress in comparison to the control. Since the plant accumulates a bioactive, secondary metabolite 20-Hydroxyecdysone (20E), we observed significant 20E content in plants grown at EC 4–12 dS/m in comparison to control. Furthermore, a preliminary field experiment, showed significant reduction in the soil electrical conductivity by 1.8 ds/m after 90 days of plant growth with Na+ sequestration in plant biomass. Subsequent to this growth period, the phytodesalinized soil supported the significant growth of a glycophyte (rice). Our results suggest that S. oleracea can adapt to saline conditions with antioxidant defense and osmotic adjustment. The plant can be used as a potential candidate for desalination and also for enhanced production of 20-Hydroxyecdysone.  相似文献   

18.
19.
Soil salinity is a severe worldwide environmental problem that adversely affects soil properties and the crop growth such as okra. We hypothesized that biochar soil amendments could increase the okra salt threshold, alleviate salt stress and improve soil productivity. In this study, a pot experiment was conducted to investigate whether biochar could ameliorate the effects of salinity on okra plants. Three biochar amendment (BA) soil applications (0%, 5% and 10% by mass of soil) were considered for seven irrigation water salinity levels (0.75, 1.0, 2.0, 4.0, 5.0, 6.0 and 7.0?dS?m?1) in a randomized block design with three replications. The Maas and Hoffman salt tolerance model was used to evaluate the effects of BA on okra plant growth parameters (e.g. yield, biomass) and water use efficiency for each salinity treatment. The results showed that increasing the soil salinity levels caused significant decreases in plant yields and yield components. However, biochar application rates of 5% and 10% increased the okra threshold by 19.7% and 81.2%, respectively, compared to the control (0%). The 10% biochar application rate also resulted in the greatest okra plant growth and increased yield, indicating that the effects of salt stress were ameliorated; moreover, the soil bulk density was decreased, and the water content was increased. Hence, biochar soil amendments could be considered as an important agronomic practice that could potentially overcome the adverse effects of salt stress.  相似文献   

20.
Extension growth of willow (Salix viminalis L.) and changes in soil water were measured in lysimeters containing clay and sandy loam soils with different amendment and watering treatments. No water uptake was found below 0.3 m in the nutritionally poor unamended clay; amendment with organic matter to 0.4 m depth resulted in water extraction down to 0.5 m depth whereas in the sandy loam, there was greater extraction from all depths down to 0.6 m. With water stress, wilting of plants occurred when the volumetric soil water content at 0.1 m was about 31% in the clay and 22% in the sandy loam. Compared with shoots on plants in the amended clay, those in the unamended treatment showed reduced extension growth, little increase in stem basal area (SBA) and a small shoot leaf area, resulting from a reduced number of leaves shoot−1 and a small average area leaf−1. Water stress also reduced shoot extension growth, SBA gain and the leaf area on extension growth. Shoot growth rates were significantly correlated with air temperature and base temperatures between 2.0 and 7.6 °C were indicated for the different treatments. These studies have helped to explain some of the large treatment effects described previously on biomass production and plant leaf area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号