首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing levels of ultraviolet-B (UV-B) radiation reaching the earth's surface caused by ozone destruction have prompted many studies of UV-B effects on plants. Most of these studies have focused on physiological and growth responses of plants to increased UV-B, but these measures may not be closely related to future survival of plant populations. We examined the effects of two different levels of increased UV-B on total female fitness, including seed number and quality, in rapid-cycling strains of Brassica nigra and B. rapa (Brassicaceae). We also measured the effects of UV-B on fitness components, particularly those related to pollination success. Two separate experiments, examining two different levels of UV-B, were performed. Sixty plants of each species were grown under control and enhanced levels of UV-B for a total of 480 plants (60 plantsx2 speciesx2 UV-B levelsx2 experiments). Increased UV-B was generally detrimental to growth and flowering in both species; however, total seed production was actually greater at higher UV-B doses in three of four dose/plant species combinations examined. UV-B had little effect on pollination success or offspring quality in either species. Therefore, in spite of the detrimental effects of UV-B on growth and flowering that we found, there is little evidence that fitness of these plant species would suffer with increasing UV-B, and we caution against using solely physiological or growth measurements to infer effects of UV-B on plant population fitness.  相似文献   

2.
While a considerable amount of attention has been devoted to the effects that increased ultraviolet-B (UV-B) radiation has on vegetative plant growth and physiological function, the impact that UV-B may have on plant fitness has been the focus of fewer studies, with attention given primarily to a few crop species. Further, the possible interactions between UV-B and additional potential stresses found in natural environments have rarely been studied experimentally. Because the reported effects of increased UV-B on plant growth and fitness have been highly variable, studies that focus on factors that may lead to these differences in results are important for the formulation of accurate predictions about future plant success under varying UV-B levels. We examined the effects of UV-B dose and intraspecific competition on growth, phenology, pollen production, pollination success, fruit and seed production, and offspring quality in two species of Phacelia. Increased UV-B was neutral or beneficial for all traits, while competition was neutral or detrimental. There were no significant interactions between UV-B and competition in the parental generation. Phacelia campanularia offspring were unaffected by parental competition, but derived indirect beneficial effects on germination, growth, and fitness traits from parental enhanced UV-B.  相似文献   

3.
To test whether drought and ABA application alter the effects of enhanced UV-B on the growth and biomass allocation of Populus yunnanensis Dode, cuttings were grown in pots at two ABA levels, two watering regimes and two UV-B levels for one growth season. Exposure to enhanced UV-B radiation significantly decreased plant growth and photosynthesis under well-watered conditions, but these effects were obscured by drought, which alone caused growth reduction. Drought may contribute to masking the effects of UV-B radiation. The accumulation of UV-B absorbing compounds and the increase of the ABA content induced by drought could reduce the effectiveness of UV-B radiation. ABA application did not have large direct effects on biomass accumulation and allocation. Evidence for interactions between UV-B and ABA was detected for only a few measured traits. Therefore, there was little evidence to support a pivotal role for ABA in regulating a centralized whole plant response to enhanced UV-B. Yet, we recorded an ABA-induced decrease in stomatal conductance (g(s)) and increase in UV-B absorbing compounds and carbon isotope composition (delta(13)C) in response to enhanced UV-B. The allometric analysis revealed that regression models between root and shoot biomass in response to enhanced UV-B are different for plants under well-watered and drought conditions. Enhanced UV-B led to a significant displacement of the allometric regression line under well-watered condition, while allometric trajectories for both UV-B regimes did not differ significantly under drought condition.  相似文献   

4.
Revegetation in semiarid road embankments is not always successful because most of the sown species disappear and only a few survive. To improve hydroseeding success, there is a need to understand the underlying ecological processes that determine the outcome of sown species in restoration works.The objective of this work is to determine the relative importance of different factors in determining the final species composition after sowing in road embankments and with this aim, we conducted three different experiments: (1) experimental sowing in road embankments to determine species performance in field conditions; (2) greenhouse sowings, with the same species than the road embankment experiment, to study the effect of ecological filters (water stress and plant coexistence) on the performance of the species; and (3) analysis of relations between plant traits of the sown species (specific seed mass and specific plant biomass) and sowing success and competitive abilities in the greenhouse experiment. Relative success of the species in the embankments was compared with the relative success of the same species in greenhouse experiments and with the seed density sown in the road embankments.Plant coexistence, water stress and plant traits affected aboveground plant biomass production per species in the greenhouse experiment. However, the effects of plant traits on aboveground plant biomass were lower than the effect of plant coexistence but higher than the effect of water stress. The performance of the species in the water stress monoculture treatment at the greenhouse correlated positively with the performance of the species in the field 2 years after they were hydroseeded, thus indicating that water stress was the most influencing factor on species performance in road embankments. At the same time, plant traits as specific seed mass and plant biomass indirectly affected plant performance in the field since they affected aboveground plant biomass in the greenhouse experiment. On the contrary, species coexistence and seed density at sowing had influence on species performance in the road embankments neither 1 nor 2 years after hydroseeding.  相似文献   

5.
Foggo A  Higgins S  Wargent JJ  Coleman RA 《Oecologia》2007,154(3):505-512
In this paper we demonstrate a UV-B-mediated link between host plants, herbivores and their parasitoids, using a model system consisting of a host plant Brassica oleracea, a herbivore Plutella xylostella and its parasitoid Cotesia plutellae. Ultraviolet-B radiation (UV-B) is a potent elicitor of a variety of changes in the chemistry, morphology and physiology of plants and animals. Recent studies have demonstrated that common signals, such as jasmonic acid (JA), play important roles in the mechanisms by which plants respond to UV-B and to damage by herbivores. Plant responses elicited by UV-B radiation can affect the choices of ovipositing female insects and the fitness of their offspring. This leads to the prediction that, in plants, the changes induced as a consequence of UV damage will be similar to those elicited in response to insect damage, including knock-on effects upon the next trophic level, predators. In our trials female P. xylostella oviposited preferentially on host plants grown in depleted UV-B conditions, while their larvae preferred to feed on tissues from UV-depleted regimes over those from UV-supplemented ones. Larval feeding patterns on UV-supplemented tissues met the predictions of models which propose that induced defences in plants should disperse herbivory; feeding scars were significantly smaller and more numerous – though not significantly so – than those on host plant leaves grown in UV-depleted conditions. Most importantly, female parasitoids also showed a clear pattern of preference when given the choice between host plants and attendant larvae from the different UV regimes; however, in the case of the female parasitoids, the choice was in favour of potential hosts foraging on UV-supplemented tissues. This study demonstrates the potential for UV-B to elicit a variety of interactions between trophic levels, most likely mediated through effects upon host plant chemistry.  相似文献   

6.
Rozema  J.  Lenssen  G. M.  van de Staaij  J. W. M.  Tosserams  M.  Visser  A. J.  Broekman  R. A. 《Plant Ecology》1997,128(1-2):183-191
UV-B radiation is just one of the environmental factors, that affect plant growth. It is now widely accepted that realistic assessment of plant responses to enhanced UV-B should be performed at sufficiently high Photosynthetically Active Radiation (PAR), preferably under field conditions. This will often imply, that responses of plants to enhanced UV-B in the field will be assessed under simultaneous water shortage, nutrient deficiency and variation of temperature. Since atmospheric CO2 enrichment, global warming and increasing UV-B radiation represent components of global climatic change, interactions of UV-B with CO2 enrichment and temperature are particularly relevant. Only few relevant UV-B× CO2 interaction studies have been published. Most of these studies refer to greenhouse experiments. We report a significant CO2 × UV-B interaction for the total plant dry weight and root dry weight of the C3-grass Elymus athericus. At elevated CO2 (720 mol mol-1, plant growth was much less reduced by enhanced UV-B than at ambient atmospheric CO2 although there were significant (positive) CO2 effects and (negative) UV-B effects on plant growth. Most other CO2 × UV-B studies do not report significant interactions on total plant biomass. This lack of CO2 × UV-B interactions may result from the fact that primary metabolic targets for CO2 and UVB are different. UV-B and CO2 may differentially affect plant morphogenetic parameters: biomass allocation, branching, flowering, leaf thickness, emergence and senescence. Such more subtle interactions between CO2 and UV-B need careful and long term experimentation to be detected. In the case of no significant CO2× UV-B interactions, combined CO2 and UV-B effects will be additive. Plants differ in their response to CO2 and UV-B, they respond in general positively to elevated CO2 and negatively to enhanced UV-B. Moreover, plant species differ in their responsiveness to CO2 and UV-B. Therefore, even in case of additive CO2 and UV-B effects, plant competitive relationships may change markedly under current climatic change with simultaneous enhanced atmospheric CO2 and solar UV-B radiation.  相似文献   

7.
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.  相似文献   

8.
Interest in the potential consequences of stratospheric ozone depletion has led to numerous studies that have evaluated the effects of ultraviolet-B (UV-B) radiation on plant growth and productivity. However, few studies have been conducted on plants from natural ecosystems. Differences in solar UV-B radiation along latitudinal or elevational gradients may have resulted in plants from diverse habitats developing contrasting sensitivities to UV-B radiation. In this study, seeds were collected along a 3,000-m elevational gradient in Hawaii and then germinated and grown in an unshaded greenhouse with either no UV-B radiation or one of two daily UV-B irradiances, 15.5 or 23.1 kj m2. Seedlings were grown for 12 weeks and harvested to determine whether UV-B radiation altered plant biomass. The responses to UV-B radiation varied among species, but, in general, sensitivity to UV-B radiation was reduced as the elevation of seed collection increased. Of the 33 species tested, UV-B radiation significantly reduced plant height in 14 species and biomass in eight species. Biomass increased in four species grown under UV-B radiation. This study provides clear evidence that natural plant populations exhibit wide variation in UV-B radiation sensitivity and that this variation is related to the natural (ambient) UV-B radiation environment in which these plants grow.  相似文献   

9.
Field and controlled environment studies were conducted to examine the effects of plant stress during growth on the subsequent phytotoxicity of residues ofBrassica napus andBrassica campestris. High temperatures (30°C compared to 15°C day temperature) and short days (8 hours light compared to 16 hours light) increased the phytotoxicity of residues as measured by a wheat bioassay. Low levels of nutrient supply during growth also increased the toxicity of Brassica residues. The effect of water stress was less clear; severe moisture stress resulted in less phytotoxicity than mild water stress. The two species showed some differences in wheat phytotoxicity following applied plant stress and the field experiments suggested there was a potential for greater toxicity from summer grown residues.  相似文献   

10.
BACKGROUND AND AIMS: Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. METHODS: An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. KEY RESULTS: Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. CONCLUSIONS: These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species.  相似文献   

11.
To determine if the evolution of fitness traits in the annual plant, Phlox drummondii, is constrained by lack of genetic variation, we calculated the heritability and genetic correlation of 16 traits in a field population. Full- and half-sib families of seeds were generated in the greenhouse and planted back into the study population. Of 855 seeds that germinated, 609 survived to produce fruit. For each plant we measured several aspects of plant size and three components of female fecundity: total number of fruits produced, number of seeds per fruit, and mass of individual seeds. Heritability of traits ranged from 0.00 to 0.15. Several traits showed significant levels of additive genetic variance, but we found no evidence of additive genetic variance in components of female fecundity and no evidence of negative genetic correlation between fitness traits. These results suggest that evolution in this population would be constrained by lack of heritable variation in fitness traits.  相似文献   

12.
Rapid cycling Brassica rapa (RCBr) develops rapidly, and has both small adult size and a brief life cycle. Yet, in spite of many investigations using RCBr, extremely few plant ecologists have used this plant in the field. This study is the first to describe the genotype specific variation in traits describing survival, growth, and reproduction for field grown, RCBr. I also identify traits associated with fitness. Five genotypes of RCBr were used: standard, anthocyaninless, yellow-green, anthocyaninless and hairless, and anthocyaninless and yellow-green. Plants were grown outside in a “common garden”. Eight plant traits were measured: life span, height, growth rate, leaf size, number of flowers and fruits, fruit set, and fitness. All traits, except life span, differed significantly among the five plant genotypes. Correlation analysis revealed that fitness increased as each of these of seven plant traits increased. This study demonstrates that RCBr can serve as a model organism in ecological field studies.  相似文献   

13.
14.
The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280–315 nm; 7.2 kJ m?2 day?1) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress more than spinach at all nutrient levels and 1.5× recommended NPK lowered the sensitivity maximally to enhanced UV-B with respect to photosynthesis, biomass and yield. PCA score has also confirmed the lower sensitivity of amaranthus compared with spinach with respect to the measured physiological and biochemical parameters.  相似文献   

15.
Irwin RE  Brody AK 《Oecologia》2011,166(3):681-692
Many antagonistic species attack plants and consume specific plant parts. Understanding how these antagonists affect plant fitness individually and in combination is an important research focus in ecology and evolution. We examined the individual and combined effects of herbivory, nectar robbing, and pre-dispersal seed predation on male and female estimates of fitness in the host plant Ipomopsis aggregata. By examining the effects of antagonists on plant traits, we were able to tease apart the direct consumptive effects of antagonists versus the indirect effects mediated through changes in traits important to pollination. In a three-way factorial field experiment, we manipulated herbivory, nectar robbing, and seed predation. Herbivory and seed predation reduced some male and female fitness estimates, whereas plants tolerated the effects of robbing. The effects of herbivory, robbing, and seed predation were primarily additive, and we found little evidence for non-additive effects of multiple antagonists on plant reproduction. Herbivory affected plant reproduction through both direct consumptive effects and indirectly through changes in traits important to pollination (i.e., nectar and phenological traits). Conversely, seed predators primarily had direct consumptive effects on plants. Our results suggest that the effects of multiple antagonists on estimates of plant fitness can be additive, and investigating which traits respond to damage can provide insight into how antagonists shape plant performance.  相似文献   

16.
Adaptive phenotypic plasticity allows sessile organisms such as plants to match trait expression to the particular environment they experience. Plasticity may be limited, however, by resources in the environment, by responses to prior environmental cues, or by previous interactions with other species, such as competition or herbivory. Thus, understanding the expression of plastic traits and their effects on plant performance requires evaluating trait expression in complex environments, rather than across levels of a single variable. In this study, we tested the independent and combined effects of two components of a plant’s environment, herbivory and water availability, on the expression of attractive and defensive traits in Nicotiana quadrivalvis in the greenhouse. Damage and drought did not affect leaf nicotine concentrations but had additive and non-additive effects on floral attractive and defensive traits. Plants in the high water treatment produced larger flowers with more nectar than in the low water treatment. Leaf damage induced greater nectar volumes in the high water treatment only, suggesting that low water limited plastic responses to herbivore damage. Leaf damage also tended to induce higher nicotine concentrations in nectar, consistent with other studies showing that leaf damage can induce floral defenses. Our results suggest that there are separate and synergistic effects of leaf herbivory and drought on floral trait expression, and thus plasticity in response to complex environments may influence plant fitness via effects on floral visitation and defense.  相似文献   

17.
Aims The relative plant type sensitivity and selected community interactions under increased UV-B radiation where examined. Specifically, we investigated: (i) if there are differences among growth forms in regard to their sensitivity to UV-B radiation, (ii) if increased UV-B radiation influences the plant competitive balance in plant communities and (iii) the response mechanisms of the UV-B radiation-sensitive species that might increase their fitness.Methods To answer our research questions, we used a mechanistic model that, for the first time, integrated the effects of increased UV-B radiation from molecular level processes, whole plant growth and development, and community interactions.Important findings In the model simulations, species types exhibited different levels of sensitivity to increased UV-B radiation. Summer C3 and C4 annuals showed similar growth inhibition rates, while biennials and winter C3 annuals were the most sensitive. Perennials exhibited inhibitions in growth only if increased UV-B radiation results in increases in metabolic rates. In communities, species sensitive to UV-B radiation may have a competitive disadvantage compared to resistant plant species. But, sensitive species may have a wide array of responses that can increase their fitness and reproductive success in the community, such as, increased secondary metabolites production, changes in timing of emergence and reproduction, and changes in seed size. While individual plants may exhibit significant inhibitions in growth and development, in communities, these inhibitions can be mitigated by small morphological and physiological adaptations. Infrequent or occasional increased UV-B radiation events should not have any lasting effect on the structure of the community, unless other environmental factors are perturbing the dynamic equilibrium.  相似文献   

18.
We examined genotype (G) by environment (E) interactions for fitness in mesic and xeric ecotypes of the self-fertilizing annual grass, Avena barbata and their recombinant inbred hybrid progeny. Fitness was assayed (1) in experimental water and nutrient treatments in the greenhouse and (2) in common gardens in each ecotype's native habitat. G x E interactions were significant in the greenhouse. Nevertheless, the same recombinant genotypes tended to have high fitness across all water and nutrient treatments. G x E interactions were less pronounced in the field, and were driven by the contrast between the uniformly low survivorship at the mesic site in 2004 and genetic variation in fitness at the other years/site combinations. Moreover, the mesic ecotype consistently outperformed the xeric in both field and greenhouse. Several of the recombinant genotypes outperformed the parents in the novel greenhouse treatments, but these genotypes did not outperform the mesic parent in field trials. Indeed, it is only in the comparison between field and greenhouse environments that there was a noticeable change in the identity of the most-fit genotype. The results provide evidence that hybridization can create genotypes that are better adapted to newer environments such as those imposed in our greenhouse experiments.  相似文献   

19.
While a large number of studies have examined the effects of increased ultraviolet-B radiation (UV-B) on growth and physiological function of plants, UV-B effects on pollination success and fitness are poorly understood. To examine this question, we measured growth, timing of flowering, pollination success, production of pollen, ovules, flowers, fruits, and seeds, and quality of offspring produced by Brassica nigra and B. rapa in a garden experiment. A total of 313 plants of the two species were randomly divided into two treatment groups. One group received only natural ambient levels of UV-B, while the other received an artificially enhanced UV-B dose. Fitness of B. nigra declined at the higher UV-B dose while B. rapa fitness did not change. One possible cause of this result was a shift in the relative attractiveness of the two species to pollinators: visitation to B. nigra declined at the high UV-B dose while B. rapa visitation increased. Received: 25 October 1996 / Accepted: 27 March 1997  相似文献   

20.
Fitness costs of defense are often invoked to explain the maintenance of genetic variation in levels of chemical defense compounds in natural plant populations. We investigated fitness costs of iridoid glycosides (IGs), terpenoid compounds that strongly deter generalist insect herbivores, in ribwort plantain (Plantago lanceolata L.) using lines that had been artificially selected for high and low leaf IG concentrations for four generations. Twelve maternal half-sib families from each selection line were grown in four environments, consisting of two nutrient and two competition treatments. We tested whether: (1) in the absence of herbivores and pathogens, plants from lines selected for high IG levels have a lower fitness than plants selected for low IG levels; and (2) costs of chemical defense increase with environmental stress. Vegetative biomass did not differ between selection lines, but plants selected for high IG levels produced fewer inflorescences and had a significantly lower reproductive dry weight than plants selected for low IG levels, indicating a fitness cost of IG production. Line-by-nutrient and line-by-competition interactions were not significant for any of the fitness-related traits. Hence, there was no evidence that fitness costs increased with environmental stress. Two factors may have contributed to the absence of higher costs under environmental stress. First, IGs are carbon-based chemicals. Under nutrient limitation, the relative carbon excess may result in the production of IGs without imposing a further constraint on growth and reproduction. Second, correlated responses to selection on IG levels indicate the existence of a positive genetic association between IG level and cotyledon size. At low nutrient level, a path analysis based on family means revealed that in the presence of competitors, the negative direct effect of a high IG level on aboveground plant dry weight was partly offset by a positive direct effect of the associated larger cotyledon size. This indicates that fitness costs of defense may be modulated by environment-specific fitness effects of genetically associated traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号