首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gromko MH  Richmond RC 《Genetics》1978,88(2):357-366
The possibility that fitness relationships associated with an inversion polymorphism in D. paulistorum were frequency dependent was investigated. Using allozymes of tetrazolium oxidase to mark inversions, the effects of genotype frequency, larval density, and culture conditions on fitness were assessed. The proportions of genotypes among egg-laying females were varied, thus changing the expected proportions of progeny produced in the absence of fecundity or viability selection. The genotypes of progeny were determined by electrophoresis and comparisons of the ratio of the numbers of the different genotypes produced to the expected ratio was used to evaluate fitness relationships. Fitness relationships were dependent on genotype frequency, larval density, and culture conditions. Selection was either absent, directional, frequency dependent (favoring rare types), or heterotic depending on density and culture conditions. It is implied that the adaptive value of genetic variants need not be apparent in all environments, or may change with changing conditions. There is evidence for different criteria for selection in the two sexes. These results add to the evidence supporting the importance of frequency-dependent selection. It is argued that for frequency dependence to be of general importance, selection must act on genes in groups, either as an inversion or as lengths of chromosome with integrity maintained by disequilibrium.  相似文献   

2.
Frequency-dependent disease impacts may contribute to the maintenance of genetic diversity and sexual reproduction in plant populations. In earlier work with experimental wheat (Triticum aestivum) populations at a single density, we found that stripe rust (caused by Puccinia striiformis) created frequency-dependent selection on its host but competitive interactions between host genotypes reduced the potential for disease to maintain genetic polymorphisms in this highly self-pollinated species; the weaker competitor actually exhibited positive disease-mediated frequency-dependent selection. Based on these results we predicted that at low density, where the overall level of competition is lower, disease would have a stronger impact relative to competition and thus be more likely to maintain genetic polymorphisms; at low densities the greatest effect of disease for negative frequency-dependent selection should be seen in the weak competitor. Here we report on results with wheat stripe rust in which we altered both the frequency and density of host genotypes in factorial combinations of two-way mixtures where each host genotype was attacked by its own specialized race of rust. Within each density disease levels increased with genotype frequencies, creating frequency-dependent disease attack at all densities. Similarly, disease created negative frequency-dependent selection on its host at all densities, as a genotype’s fitness was often greater at low than high frequency when disease was present. Disease levels increased with plant density in 1997 but decreased in 1998. While increasing plant density reduced absolute fitness, presumably as a result of increased competition, a genetic polymorphism was not more likely to be maintained at low than high density as we had predicted. Within each density, the impact of disease was insufficient to reverse the slope of the relationship between absolute fitness and planted frequency from positive to negative for the less competitive host genotype, thus preventing the maintenance of a genetic polymorphism.  相似文献   

3.
Abstract.— Pathogens have the potential to maintain genetic polymorphisms by creating frequency-dependent selection on their host. This can occur when a rare host genotype is less likely to be attacked by a pathogen (frequency-dependent disease attack) and has higher fitness at low frequency (negative frequency-dependent selection). In this study, we used wheat genotypes that were susceptible to different races of the pathogen Puccinia striiformis to test whether disease created frequency-selection on its host and whether such selection could maintain polymorphisms for resistance genes in the wheat populations. Four different two-way mixtures of wheat genotypes were planted at different frequencies in both the presence and absence of disease. Disease created frequency-dependent selection on its host in some populations. Unknown factors other than disease also created frequency-dependent selection in this system because, in some instances, rare genotype advantage was observed in the absence of disease. Although the pathogen created frequency-dependent selection on its host, this selection was not sufficient to maintain genetic polymorphism in the host populations. In all cases where frequency-dependent selection occurred only in the diseased plots, one of the two genotypes was predicted to dominate in the population and the same genotype was predicted to dominate in both the presence and absence of disease. Only in cases where frequency-dependent selection was not caused by disease was there evidence that genetic polymorphisms would be maintained in the population. The frequency-dependent selection described in this study is a consequence of epidemiological effects of disease and differs from the time-lagged frequency-dependent selection resulting from coevolution between hosts and parasites. The impact of this direct frequency-dependent selection on the maintenance of genetic polymorphisms in the host population is discussed.  相似文献   

4.
We have studied differences in the number of Drosophila pseudoobscura produced in a culture when the flies differ with respect to two alleles (F and S) at the Mdh-2 locus, which codes for a malate dehydrogenase enzyme. The studies were done at low and at high density in two- and three-genotype combinations (S/S, F/F and S/F), with one-genotype cultures as controls.——Density affects the fitness of the Mdh-2 genotypes. Different genotypes are differently affected, and the genotype of the competitors also makes a difference on the fitness of a given genotype. When three genotypes are present in a culture, particularly at high density, intergenotypic competition is less intense than intragenotypic competition at several frequency combinations. That is, there is "overcompensation": the three genotypes together exploit the environmental resources better than one genotype alone.—The fitness of the genotypes is frequency dependent in both two-genotype and three-genotype combinations. An inverse relationship between frequency and fitness is observed at high density. This may lead to a stable polymorphism, because the fitness of a genotype increases as its frequency decreases.—Forty independent strains, sampled from a natural population, were used in the experiments. This ensures that more than 95% of the variation present in the genome in the natural population is also present is the experimental cultures. It also ensures that the genetic background of the Mdh-2 alleles is randomized in the same way as it is in nature. However, the possibility remains that Mdh-2 alleles in nature are nonrandomly associated with alleles at closely linked loci. If linkage disequilibrium is present in the experiments because it exists in nature, then the observed effects (such as frequency-dependent selection) would affect the Mdh-2 locus in nature as well.  相似文献   

5.
Extensive biometrical and statistically oriented studies in segregation and pedigree analyses reflect current efforts to demonstrate major gene factors playing a significant role for a whole hierarchy of multifactorial diseases and related risk factors exhibiting continuous variation. The evolutionary aspects of the changes in gene frequencies of some major gene one locus models admitting a broad range of genotype-phenotype associations and different forms of selection functions are investigated. The flexibility of differences among the genotypic-phenotypic distribution can take account of variable penetrance expressivity, complex multifarious heterogeneous background effects, or partial dominance concepts. The phenotype distribution and selection function are assumed to be time invariant such that the environments with which the population interacts do not depend on either the phenotypes or the genotypes present in the population of any particular generation. Viability selection optimizing or directional acts on the phenotypic level. We consider random mating, and concentrate mostly on evaluating the nature of the equilibrium structure for the cases of “strong” and “weak” selection. For weak stabilizing selection the determinants of superior genotypic fitness in the class of phenotypic symmetric distributions reside in minimizing a combination of the phenotypic variance and the deviation of the phenotypic mean from the optimal phenotype. With equal means of central phenotype values, a canalizing selection effect signifying fitness superiority for the genotype with minimal variance is in force. For strong stabilizing selection the genotype-phenotype density at the optimal value determines the relative genotype fitness value. For directional selection the determinants of the selection realizations depend on a “standardized” deviation of the mean phenotype distributional value relative to its total variance. The effects of symmetry as against asymmetry in the genotype distributions with prescribed means and variances were investigated by numerical computations.  相似文献   

6.
Debenedictis PA 《Genetics》1977,87(2):343-356
Changes in genetic composition and in fitness of karyotypes in synthetic populations of Drosophila melanogaster carrying fourth chromosomes marked with recessive mutants in repulsion were measured as functions of initial population composition and density. There was no detectable influence of initial population density on the magnitude of chromosome frequency change or on adaptive values of karyotypes, but both measures proved sensitive to population composition. That fitness be measured zygote-to-zygote is argued to be of dubious necessity in all contexts except demonstration of frequency-dependent selection. Some prior reports cited as evidence of the operation of density-dependent selection, like the present study, contain no evidence that the rate of natural selection is influenced by population crowding. Reports that do demonstrate density-dependent selection suggest that the relationship between fitness and crowding differs from that assumed in most theoretical treatments. Further work is needed to elucidate the interaction between fitness, population crowding, and population composition.  相似文献   

7.
K. Pecsenye  G. Lörincz 《Genetica》1988,77(3):171-177
Experiments have been performed to study the effect of selection at the Odh locus in Drosophila melanogaster populations using different alcohol concentrations in the medium. The data can be best interpreted by assuming frequency-dependent selection. When genotype frequencies are considered as independent variables and values of Wrightian fitness as dependent variables, it turns out that different functions describe the selection of the coexisting genotypes. A linear equation is used for the SF genotype and a hyperbolic function for the FF genotype. No function of good fit could be found for the SS genotype. Simulation experiments using these functions fit our data well.  相似文献   

8.
Defective viruses lack genes essential for survival but they can co-infect with complete virus genotypes and use gene products from the complete genotype for their replication and transmission. As such, they are detrimental to the fitness of complete genotypes. Here, we describe a mutualistic interaction between genotypes of an insect baculovirus (nucleopolyhedrovirus of Spodoptera frugiperda (Lepidoptera)) that increases the pathogenicity of the viral population. Mixtures of a complete genotype able to be transmitted orally and a deletion mutant unable to be transmitted orally resulted in a phenotype of increased pathogenicity. Because the infectiousness of mixed genotype infections was greater than that of single genotype infections, we predict that the transmissibility of mixed genotype occlusion bodies will be greater than that of any of their single genotype components. Such interactions will be subject to frequency-dependent selection and will influence the impact of these viruses on insect population dynamics and their efficacy as biological insecticides.  相似文献   

9.
Because interactions among plants are spatially local, the scale of environmental heterogeneity can have large effects on evolutionary dynamics. However, very little is known about the spatial patterns of variation in fitness and the relative magnitude of spatial and temporal variation in selection. Replicates of 12 genotypes of Erigeron annuus (Asteraceae) were planted in 288 locations within a field, separated by distances of 0.1 to 30.0 m, and replicated in two years. In a given year, most spatial variation in relative fitness (genotype-environment [G × E] interactions for fitness) occurred over distances of only 50 cm. Year effects were as large or larger than the spatial variation in fitness; in particular there was a large, three-way, genotype-year-environment interaction at the smallest spatial scale. The genetic correlation of fitness across years at a given location was near zero, 0.03. Thus, the relative fitness of genotypes is spatially unpredictable and a map of the selective environment has constantly shifting locations of peaks and valleys. Including measurements of soil nutrients as covariates in the analysis removed most of the spatial G × E interaction. Vegetation and microtopography had no effect on the G × E terms, suggesting that differential response to soil nutrients is the cause of spatial variation in fitness. However, the slope of response to NH4 and P04 was negative; therefore the soil nutrients are probably just indicators of other, unknown, environmental factors. We explored via simulation the evolutionary consequences of spatial and temporal variation in fitness and showed that, for this system, the spatial scale of variation was too fine grained (by a factor of 3 to 5) to be a powerful force maintaining genetic variation in the population. The inclusion of both spatial and temporal variation in fitness actually reduced the coexistence of genotypes compared to pure spatial models. Thus the presence of spatial or temporal variation in selection does not guarantee that it is an effective evolutionary force maintaining diversity. Instead the pattern of selection favors generalist genotypes.  相似文献   

10.
Genetic models of colony-level selection applicable to diploids (termites) and haplodiploids (social Hymenoptera) are analysed. In the Additive model colony fitnesses are just the arithmetic average of the contribution of the worker genotypes. In the Nonadditive model the fitness of the heterogenotypic colonies (those comprised of more than one worker genotype) may be altered due to interaction between the different worker genotypes. This is modelled by multiplying the additive fitness by the variable, ei. With additive selection the same equilibrium gene frequency occurs in diploids and in haplodiploids with both once and twice mated queens. In haplodiploids if selection is nonadditive and strong, up to three polymorphic equilibria can exist; however, only a maximum of two are possible with weak selection. Multiple mating by queens increases the number of equilibria possible. Worker-produced males alter the conditions for the existence of a polymorphic equilibrium, and shift the male and female equilibrium gene frequencies.  相似文献   

11.
Whereas the importance of frequency-dependent selection in life-history traits, behavioral characters and source allocation patterns is widely accepted, its role in governing biochemical and molecular polymorphisms remains poorly understood. Here we demonstrate a case of allozyme frequency-dependent selection. When olive fruit flies (Bactrocera oleae) are reared on an artificial larval medium, an allele at the alcohol dehydrogenase locus that is present in very low frequency in natural populations increases to about one-third in less than five generations. We show here that the time from the hatching of the egg to the eclosion of the adult is affected by the genotype composition of the larval population that grows in the same cup of food. Cultures consisting of one genotype only have the longest developmental time, and two-allele cultures in which the two homozygotes and the heterozygote occur in a 1:1:2 ratio show the shortest developmental time. Cultures with intermediate genotypic compositions show intermediate levels of developmental time. The results can be explained by assuming that the developmental time of a genotype depends on the frequency array of all genotypes in the larval population and is not merely a function of its own frequency. It is even possible that the developmental time of a genotype becomes longer as the genotype becomes rarer, yet the genotype will be favored because the developmental times of the competing genotypes become even longer owing to the associated increase of their frequencies. Given that developmental time is inversely related to fitness, this generates a frequency-dependent selection, with developmental times changing progressively until the population arrives at an equilibrium. One optimum population composition that provides a satisfactory fit to allele frequency changes in our experimental populations is when the two alleles occur in equal frequencies and genotypes are in Hardy-Weinberg proportions. We argue that this type of selection is consistent with the role of alcohol dehydrogenase as a detoxifying enzyme in a medium that undergoes continuous chemical changes during its use by the feeding larvae.  相似文献   

12.
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.  相似文献   

13.
Positive feedbacks have been suggested as a means for non-indigenous species to successfully invade novel environments. Frequency-dependent feedbacks refer to a species performance being dependent on its local abundance in the population; however, frequency dependence is often described as a monolithic trait of a species rather than examining the variation in response for individual genotypes and fitness traits. Here, we investigate frequency-dependent outcomes for individual genotypes and fitness-related traits for the invasive grass Phalaris arundinacea. We tested for competition-mediated frequency dependence by establishing hexagonal arrays with the center target plant surrounded by either same, different or no genotype neighbors to determine how changing the small-scale frequency neighborhood-influenced invasion success. We used a Bayesian ANOVA approach which allowed us to easily accommodate our non-normal dataset and found that same neighbor plots had greater biomass production than different neighbor plots. Target plants also had greater stem height and aboveground biomass when surrounded by same genotype neighbors. A greenhouse experiment did not support the hypothesis that increased mycorrhizal associations were the cause of positive frequency dependence. We devised a frequency-dependent metric to quantify the extent of fitness-related differences for individual genotypes and found that individual genotypes showed a range of both positive and negative responses to different frequency treatments; however, only positive responses were statistically significant. The small-scale genotypic neighborhood had no effect for the fitness-related traits of leaf number, belowground biomass and total biomass. We demonstrate that individual invasive genotypes respond differently to changing frequency neighborhoods and that growth responses do not respond with the same direction and magnitude. A range of frequency-dependent responses may allow genotypes to invade a wide range of environments.  相似文献   

14.
Frequency-dependent selection and competition: empirical approaches   总被引:2,自引:0,他引:2  
When Darwin and Wallace first formulated the theory of evolution by natural selection, they were greatly influenced by the idea that populations tend to increase geometrically and rapidly outgrow the resources available to them. They argued that the ensuing competition among individuals would be a major agent of natural selection. Since their day, competition has become almost synonymous with the idea of natural selection or survival of the fittest. In this paper we examine the relation between competition and selection by using simple competition models, consider the interaction of density and frequency in determining competitive outcome, and review the literature on frequency-dependent competitive interactions among genotypes within populations.  相似文献   

15.
The consequences of density dependent selection on genetically heterogeneous, diploid populations reproducing by self-mating or various parthenogenetic mechanisms is investigated. A logistic fitness function that depends upon both the genotype of an individual and the density of the population is used. Such a fitness function simultaneously determines the population size and the genotype frequencies. The equilibrium solutions to a one locus and two locus model are given as well as some generalizations to n loci and nonlogistic fitness functions. Conditions are found that maintain several different genotypes simultaneously in the equilibrium population. The interaction of such selection with the genetic mechanisms which determine mode of reproduction in parthenogenetic populations is also discussed.  相似文献   

16.
We compare the results of four experiments, conducted at different times and with different protocols, that explored the relationship between frequency-dependent selection and prey density in wild birds feeding on artificial populations of coloured baits. One (experiment 4) used pastry baits that differed only in the presence or absence of a red stripe, and this experiment provided no evidence for any kind of selective behaviour. The other three experiments used green and brown baits, and they all provided evidence for a trend towards increasing anti-apostatic selection with high densities (>100 baits m–2). However, one of these (experiment 3) provided no evidence for frequency-dependent selection at low densities (0.5–20 baits m–2), while the other two experiments concurred in suggesting a trend towards increasing apostatic selection with low densities (down to 2 baits m–2). Together, these experiments both support and qualify the published findings of experiment 1 that frequency- dependent selection by wild birds on bait populations is modified by density. Experiment 4 indicates that frequency-dependent selection may break down entirely if bait types are too similar, while experiment 3 indicates that some details of this trend with density will depend either on the protocol used or on exogenous changes in the birds’ feeding behaviour. Received: 1 September 1999 / Accepted: 22 March 2000  相似文献   

17.
Negative frequency-dependence, which favors rare genotypes, promotes the maintenance of genetic variability and is of interest as a potential explanation for genetic differentiation. Density-dependent selection may also promote cyclic changes in frequencies of genotypes. Here we show evidence for both density-dependent and negative frequency-dependent selection on opposite life-history tactics (low or high reproductive effort, RE) in the bank vole (Myodes glareolus). Density-dependent selection was evident among the females with low RE, which were especially favored in low densities. Instead, both negative frequency-dependent and density-dependent selection were shown in females with high RE, which were most successful when they were rare in high densities. Furthermore, selection at the individual level affected the frequencies of tactics at the population level, so that the frequency of the rare high RE tactic increased significantly at high densities. We hypothesize that these two selection mechanisms (density- and negative frequency-dependent selection) may promote genetic variability in cyclic mammal populations. Nevertheless, it remains to be determined whether the origin of genetic variance in life-history traits is causally related to density variation (e.g. population cycles).  相似文献   

18.
B. A. Roy 《Oecologia》1998,115(1-2):73-83
Reciprocal transplant experiments have been used to estimate the probability that negative frequency-dependent selection by natural enemies has occurred in host populations by determining whether pest populations are less adapted to “foreign” (rare) hosts, which originate from a population with which the pests have not coevolved. However, these experiments usually confound the effects of frequency and origin: the rare genotypes are also genotypes that did not originate at a site. When clonal organisms are used, and the clones occur in more than one population, it is possible to separate the effects of origin and frequency. Here I present the results of an experiment in which Arabis clones of known frequency were reciprocally transplanted among sites. Contrary to expectations, clones at their site of origin had less disease, less herbivory, and higher fitness than foreign clones. However, variation within and among sites in herbivory and infection was large, suggesting that the number of sites and clones needed to thoroughly test the hypothesis of negative frequency-dependent selection in this system is very large: thus, these results are suggestive but not conclusive. Received: 20 October 1997 / Accepted: 8 February 1998  相似文献   

19.
? Premise of the study: Evolutionary processes that maintain genetic diversity in plants are likely to include selection imposed by pathogens. Negative frequency-dependent selection is a mechanism for maintenance of resistance polymorphism in plant-pathogen interactions. We explored whether such selection operates in the Bromus tectorum-Ustilago bullata pathosystem. Gene-for-gene relationships between resistance and avirulence loci have been demonstrated for this pathosystem. ? Methods: We used molecular markers and cross-inoculation trials to learn whether the SSR genotypes of the host exhibited resistance to co-occurring pathogen races, whether host genotypes within a population had equal disease probability, and whether a common resistance locus and its corresponding avirulence locus exhibited predicted allele frequency changes during an epidemic. ? Key results: Five of six putative resistance loci that conferred resistance to co-occurring pathogen races occurred in common host SSR genotypes. Some common genotypes within populations were more likely to be diseased than others, and genotype frequencies sometimes changed across years in patterns consistent with frequency-dependent selection. Observed changes in frequency of resistance and virulence alleles during an epidemic provided further support, but evidence was inconclusive. ? Conclusions: Frequency-dependent selection may operate at endemic disease levels in this pathosystem, but is difficult to detect because many susceptible plants escape infection. Most pathogen isolates were virulent on most host genotypes, minimizing the apparent importance of frequency-dependent selection even during epidemics.  相似文献   

20.
In this article, an approach to measure fitness is proposed that considers fitness as a measure of competitive ability among phenotypes or genotypes. This approach is based on pairwise competition tests and is related to measures of “utility” in mathematical economics. Extending the results from utility theory it is possible to recover the classical Wrightian fitness measure without reference to models of population growth. A condition, quasi‐BTL, similar to the Bradley–Terry–Luce condition of classical utility theory is shown to be necessary for the existence of frequency and context‐independent fitness measures. Testing for violations of this quasi‐BTL condition can be used to the detect genotype‐by‐genotype interactions and frequency‐dependent fitness. A method for the detection of genotype by environment interactions is proposed that avoids potential scaling artifacts. Furthermore the measurement theoretical approach allows one to derive Wright's selection equation. This shows that classical selection equations are entirely general and exact. It is concluded that measurement theory is able to give definite answers to a number theoretical and practical questions. For instance, this theory identifies the correct scale for measuring gene interaction with respect to fitness and shows that different scales may lead to wrong conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号