首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membranes of mammalian subcellular organelles contain defined amounts of specific phospholipids that are required for normal functioning of proteins in the membrane. Despite the wide distribution of most phospholipid classes throughout organelle membranes, the site of synthesis of each phospholipid class is usually restricted to one organelle, commonly the endoplasmic reticulum (ER). Thus, phospholipids must be transported from their sites of synthesis to the membranes of other organelles. In this article, pathways and subcellular sites of phospholipid synthesis in mammalian cells are summarized. A single, unifying mechanism does not explain the inter‐organelle transport of all phospholipids. Thus, mechanisms of phospholipid transport between organelles of mammalian cells via spontaneous membrane diffusion, via cytosolic phospholipid transfer proteins, via vesicles and via membrane contact sites are discussed. As an example of the latter mechanism, phosphatidylserine (PS) is synthesized on a region of the ER (mitochondria‐associated membranes, MAM) and decarboxylated to phosphatidylethanolamine in mitochondria. Some evidence is presented suggesting that PS import into mitochondria occurs via membrane contact sites between MAM and mitochondria. Recent studies suggest that protein complexes can form tethers that link two types of organelles thereby promoting lipid transfer. However, many questions remain about mechanisms of inter‐organelle phospholipid transport in mammalian cells.  相似文献   

2.
《The Journal of cell biology》1987,105(6):2923-2931
Translocation of proteins across membranes of the endoplasmic reticulum, mitochondrion, and chloroplast has been shown to be mediated by targeting signals present in the transported proteins. To test whether the transport of proteins into peroxisomes is also mediated by a peptide targeting signal, we have studied the firefly luciferase gene that encodes a protein transported to peroxisomes in both insect and mammalian cells. We have identified two regions of luciferase which are necessary for transport of this protein into peroxisomes. We demonstrate that one of these, region II, represents a peroxisomal targeting signal because it is both necessary and sufficient for directing cytosolic proteins to peroxisomes. The signal is no more than twelve amino acids long and is located at the extreme carboxy-terminus of luciferase. The location of the targeting signal for translocation across the peroxisomal membrane therefore differs from the predominantly amino-terminal location of signals responsible for transport across the membranes of the endoplasmic reticulum, chloroplast, or mitochondrion.  相似文献   

3.
The association of Sindbis virus proteins with cellular membranes during virus maturation was examined by utilizing a technique for fractionating the membranes of BHK-21 cells into three subcellular classes, which were enriched for rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membrane. Pulse-chase experiments with wild-type (strain SVHR) virus-infected cells showed that virus envelope proteins were incorporated initially into membranes of the rough endoplasmic reticulum and subsequently migrated to the smooth and plasma membrane fractions. Large amounts of capsid protein were associated with the plasma membrane fraction even at the earliest times postpulse, and relatively little was found associated with the other membranes, suggesting a rapid and preferential association of nucleocapsids with the plasma membrane. We also examined the intracellular processing of the proteins of two temperature-sensitive Sindbis virus mutants in pulse-chase experiments at the nonpermissive temperature. Labeled virus proteins of mutant ts-20 (complementation group E) first appeared in the rough endoplasmic reticulum and were then transported to the smooth and plasma membrane fractions, as in wild-type (strain SVHR) virus-infected cells. In cells infected with ts-23 (complementation group D), the pulse-labeled virus proteins appeared initially in the rough membrane fraction and were transported to the smooth membrane fraction, but only limited amounts reached the plasma membrane. Thus, in ts-23-infected cells, the transport of the virus-encoded proteins from the smooth membranes seemed to be defective. In both ts-20- and ts-23-infected cells the envelope precursor polypeptide PE2 was not processed to E2, and no label was incorporated into free virus at the nonpermissive temperature.  相似文献   

4.
In posttranslational translocation in yeast, completed protein substrates are transported across the endoplasmic reticulum membrane through a translocation channel formed by the Sec complex. We have used photo-cross-linking to investigate interactions of cytosolic proteins with a substrate synthesized in a reticulocyte lysate system, before its posttranslational translocation through the channel in the yeast membrane. Upon termination of translation, the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC) are released from the polypeptide chain, and the full-length substrate interacts with several different cytosolic proteins. At least two distinct complexes exist that contain among other proteins either 70-kD heat shock protein (Hsp70) or tailless complex polypeptide 1 (TCP1) ring complex/chaperonin containing TCP1 (TRiC/CCT), which keep the substrate competent for translocation. None of the cytosolic factors appear to interact specifically with the signal sequence. Dissociation of the cytosolic proteins from the substrate is accelerated to the same extent by the Sec complex and an unspecific GroEL trap, indicating that release occurs spontaneously without the Sec complex playing an active role. Once bound to the Sec complex, the substrate is stripped of all cytosolic proteins, allowing it to subsequently be transported through the membrane channel without the interference of cytosolic binding partners.  相似文献   

5.
《The Journal of cell biology》1985,101(5):1733-1740
The Golgi apparatus mediates intracellular transport of not only secretory and lysosomal proteins but also membrane proteins. As a typical marker membrane protein for endoplasmic reticulum (ER) of rat hepatocytes, we have selected phenobarbital (PB)-inducible cytochrome P- 450 (P-450[PB]) and investigated whether P-450(PB) is transported to the Golgi apparatus or not by combining biochemical and quantitative ferritin immunoelectron microscopic techniques. We found that P-450(PB) was not detectable on the membrane of Golgi cisternae either when P-450 was maximally induced by phenobarbital treatment or when P-450 content in the microsomes rapidly decreased after cessation of the treatment. The P-450 detected biochemically in the Golgi subcellular fraction can be explained by the contamination of the microsomal vesicles derived from fragmented ER membranes to the Golgi fraction. We conclude that when the transfer vesicles are formed by budding on the transitional elements of ER, P-450 is completely excluded from such regions and is not transported to the Golgi apparatus, and only the membrane proteins destined for the Golgi apparatus, plasma membranes, or lysosomes are selectively collected and transported.  相似文献   

6.
 Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation. Accepted: 24 October 1997  相似文献   

7.
Integration of a protein into the endoplasmic reticulum (ER) membrane occurs through a series of multistep reactions that include targeting of ribosome-nascent polypeptide complexes to the ER, attachment of the ribosome to the protein translocation channel, lateral partitioning of α-helical transmembrane spans into the lipid bilayer, and folding of the lumenal, cytosolic and membrane-embedded domains of the protein. However, the molecular mechanisms and kinetics of these steps are still not entirely clear. To obtain a better understanding of the mechanism of membrane protein integration, we propose that it will be important to utilize in vivo experiments to examine the kinetics of membrane protein integration and in vitro experiments to characterize interactions between nascent membrane proteins, protein translocation factors and molecular chaperones.  相似文献   

8.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

9.
Transport of presecretory proteins into the mammalian rough endoplasmic reticulum involves a protein translocase that comprises the integral membrane proteins Sec61alphap, Sec61betap, and Sec61gammap as core components. Electron microscopic analysis of protein translocase in rough microsomal membranes suggested that between three and four heterotrimeric Sec61p complexes form the central unit of protein translocase. Here we analyzed the stoichiometry of heterotrimeric Sec61p complexes present in cotranslationally active protein translocases of canine pancreatic microsomes and various other lumenal and membrane components believed to be subunits of protein translocase and to be involved in covalent modifications. Based on these numbers, the capacity for cotranslational transport was estimated for the endoplasmic reticulum of the human pancreas.  相似文献   

10.
Thyroid peroxidase (TPO) and thyroglobulin (TG) represent two major glycoproteins of thyroid follicular cells performing biological functions such as iodination, transcytosis of thyroglobulin, and formation of thyroid hormones. They are involved in thyroid autoimmunity and thyroid inborn metabolic disorders. Studying these processes at a molecular level includes the determination of their precise intracellular distribution. An evaluation of the relative concentrations of TG and TPO in different subcellular compartments was carried out in stimulated human follicular cells using thin-frozen sections and the immunogold technique. It is documented that TG is transported from the endoplasmic reticulum and the Golgi apparatus to the follicular lumen by transport vesicles; most of it being present in the expanded endoplasmic reticulum throughout the cytoplasm. On the other hand, gold particles indicating TPO are adjacent to the membranes of the exocytotic pathway. They do not label the basolateral membrane but show the strongest density in the nuclear envelope and the apical membrane. The labeling density of TPO is about four times higher in the nuclear envelope than in the endoplasmic reticulum throughout the cytoplasm. In contrast, TG is concentrated three times higher in the rough endoplasmic reticulum throughout the cytoplasm than in the nuclear cisternae. Our results give the first quantitative evidence that TPO and TG are concentrated in different subcompartments of the endoplasmic reticulum. Because previous studies demonstrated the nuclear envelope as the site where the synthesis of endogenous peroxidase (Br?kelmann, J., D. W. Fawcett, Biol. Reprod. 1, 59-71 (1969)) begins, we suggest that synthesis of these functionally related proteins happens in specialized parts of the endoplasmic reticulum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Structure and function of the bacterial Sec translocon   总被引:3,自引:0,他引:3  
Bacteria and archaea possess a protein complex in the plasma membrane that governs protein secretion and membrane protein insertion. Eukaryotes carry homologues in the endoplasmic reticulum (ER) where they direct the same reaction. A combination of experiments conducted on the systems found in all three domains of life has revealed a great deal about protein translocation. The channel provides a route for proteins to pass through the hydrophobic barrier of the membrane, assisted by various partner proteins which maintain an unfolded state of the substrate, target it to the channel and provide the energy and mechanical drive required for transport. In bacteria, the post-translational reaction utilizes an ATPase that couples the free energy of ATP binding and hydrolysis to move the substrate through the protein pore. This review will draw on genetic, biochemical and structural findings in an account of our current understanding of this mechanism.  相似文献   

12.
Bacteria and archaea possess a protein complex in the plasma membrane that governs protein secretion and membrane protein insertion. Eukaryotes carry homologues in the endoplasmic reticulum (ER) where they direct the same reaction. A combination of experiments conducted on the systems found in all three domains of life has revealed a great deal about protein translocation. The channel provides a route for proteins to pass through the hydrophobic barrier of the membrane, assisted by various partner proteins which maintain an unfolded state of the substrate, target it to the channel and provide the energy and mechanical drive required for transport. In bacteria, the post-translational reaction utilizes an ATPase that couples the free energy of ATP binding and hydrolysis to move the substrate through the protein pore. This review will draw on genetic, biochemical and structural findings in an account of our current understanding of this mechanism.  相似文献   

13.
The E2 protein (422 amino acid residues long) of Semliki Forest virus is a spanning membrane protein which is made in the rough endoplasmic reticulum of the infected cell and transported to the cell surface. The cytoplasmic domain of this protein comprises 31 amino acid residues. We introduced deletions of various sizes into the gene region encoding this part of the protein molecule and analyzed the transport behavior of the mutant proteins. The deletions were made using exonuclease digestions of cloned cDNA encoding the E2 protein. When the mutated DNA molecules, engineered into an expression vector, were introduced into nuclei of baby hamster kidney 21 cells, membrane proteins with cytoplasmic deletions were expressed and routed to the cell surface in the same way as the wild-type protein. This suggests that the cytoplasmic domain of the E2 protein does not carry information that is needed for its transport from the rough endoplasmic reticulum to the cell surface.  相似文献   

14.
A comprehensive analysis of plasma membrane proteins is essential to in-depth understanding of brain development, function, and diseases. Proteomics offers the potential to perform such a comprehensive analysis, yet it requires efficient protocols for the purification of the plasma membrane compartment. Here, we present a novel and efficient protocol for the separation and enrichment of brain plasma membrane proteins. It lasts only 4 h and is easy to perform. It highly enriches plasma membrane proteins and can be applied to small amounts of brain tissue, such as the cerebellum of a single rat, which was used in the present study. The protocol is based on affinity partitioning of microsomes in an aqueous two-phase system. Marker enzyme assays demonstrated a more than 12-fold enrichment of plasma membranes and a strong reduction of other compartments, such as mitochondria and the endoplasmic reticulum. 506 different proteins were identified when the enriched proteins underwent LC-MS/MS analysis subsequent to protein separation by SDS-PAGE. Using gene ontology, 146 proteins were assigned to a subcellular compartment. Ninety-three of those (64%) were membrane proteins, and 49 (34%) were plasma membrane proteins. A combined literature and database search for all 506 identified proteins revealed subcellular information on 472 proteins, of which 197 (42%) were plasma membrane proteins. These comprised numerous transporters, channels, and neurotransmitter receptors, e.g. the inward rectifying potassium channel Kir7.1 and the cerebellum-specific gamma-aminobutyric acid receptor GABRA6. Surface proteins involved in cell-cell contact and disease-related proteins were also identified. Six of the 146 assigned proteins were derived from mitochondrial membranes and 5 from membranes of the endoplasmic reticulum. Taken together, our protocol represents a simple, rapid, and reproducible tool for the proteomic characterization of brain plasma membranes. Because it conserves membrane structure and protein interactions, it is also suitable to enrich multimeric protein complexes from the plasma membrane for subsequent analysis.  相似文献   

15.
Most mitochondrial proteins are transported from the cytosol into the or-ganelle. Due to the division of mitochondria into an outer and inner membrane, an inter-membrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

16.
BACKGROUND: A long-standing problem in understanding the mechanism by which the phospholipid bilayer of biological membranes is assembled concerns how phospholipids flip back and forth between the two leaflets of the bilayer. This question is important because phospholipid biosynthetic enzymes typically face the cytosol and deposit newly synthesized phospholipids in the cytosolic leaflet of biogenic membranes such as the endoplasmic reticulum (ER). These lipids must be transported across the bilayer to populate the exoplasmic leaflet for membrane growth. Transport does not occur spontaneously and it is presumed that specific membrane proteins, flippases, are responsible for phospholipid flip-flop. No biogenic membrane flippases have been identified and there is controversy as to whether proteins are involved at all, whether any membrane protein is sufficient, or whether non-bilayer arrangements of lipids support flip-flop. RESULTS: To test the hypothesis that specific proteins facilitate phospholipid flip-flop in the ER, we reconstituted transport-active proteoliposomes from detergent-solubilized ER vesicles under conditions in which protein-free liposomes containing ER lipids were inactive. Transport was measured using a synthetic, water-soluble phosphatidylcholine and was found to be sensitive to proteolysis and associated with proteins or protein-containing complexes that sedimented operationally at 3.8S. Chromatographic analyses indicated the feasibility of identifying the transporter(s) by protein purification approaches, and raised the possibility that at least two different proteins are able to facilitate transport. Calculations based on a simple reconstitution scenario suggested that the transporters represent approximately 0.2% of ER membrane proteins. CONCLUSIONS: Our results clearly show that specific proteins are required to translocate a phosphatidylcholine analogue across the ER membrane. These proteins are likely to be the flippases, which are required to translocate natural phosphatidylcholine and other phospholipids across the ER membrane. The methodology that we describe paves the way for identification of a flippase.  相似文献   

17.
Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.  相似文献   

18.
流感病毒的蛋白和基因组在宿主细胞内能否正确地转运到相关部位,直接影响到病毒颗粒的形态发生。流感病毒跨膜蛋白(HA、NA和M2)主要通过宿主细胞的运输膜泡实现转运,而宿主细胞的蛋白转运机器参与了这一过程。新合成的流感病毒核糖核蛋白复合物(vRNPs)出核后,通过与活化的Rab11相结合,聚集于邻近微管组织中心(MTOC)的胞内体。然后以运输小膜泡的形式,沿着MTOC的微管网络向细胞膜方向转运。跨膜蛋白和基因组在细胞质内的转运受一些宿主因子的调控,如ARHGAP21和小G蛋白Cdc42能够调节NA蛋白向细胞膜转运,Rab11协助vRNPs从MTOC向细胞膜转运。文中主要讨论新合成的流感病毒跨膜蛋白和遗传物质在宿主细胞质内的顺向转运(Anterograde transport)过程与调控。  相似文献   

19.
Although cholesterol is synthesized in the endoplasmic reticulum (ER), compared with other cellular membranes, ER membrane has low cholesterol (3-6%). Most of the molecular machinery that regulates cellular cholesterol homeostasis also resides in the ER. Little is known about how cholesterol itself affects the ER membrane. Here, we demonstrate that acute cholesterol depletion in ER membranes impairs ER-to-Golgi transport of secretory membrane proteins. Cholesterol depletion is achieved by a brief inhibition of cholesterol synthesis with statins in cells grown in cholesterol-depleted medium. We provide evidence that secretory membrane proteins vesicular stomatitis virus glycoprotein and scavenger receptor A failed to be efficiently transported from the ER upon cholesterol depletion. Fluorescence photobleaching recovery experiments indicated that cholesterol depletion by statins leads to a severe loss of lateral mobility on the ER membrane of these transmembrane proteins, but not loss of mobility of proteins in the ER lumen. This impaired lateral mobility is correlated with impaired ER-to-Golgi transport. These results provide evidence for the first time that cholesterol is required in the ER membrane to maintain mobility of membrane proteins and thus protein secretion.  相似文献   

20.
Proteins destined for secretion are translocated across or inserted into the endoplasmic reticulum membrane whereupon they fold and assemble to their native state before their subsequent transport to the Golgi apparatus. Proteins that fail to fold correctly are translocated back across the endoplasmic reticulum membrane to the cytosol where they become substrates for the cytosolic degradative machinery. Central to translocation is a protein pore in the membrane called the translocon that allows passage of proteins in and out of the endoplasmic reticulum. It is clear that the conformation of the polypeptide chain influences the translocation process and that there is a temporal relationship between modification of the chain, translocation and folding. This review will consider when and how the polypeptide chain folds, and how this might influence translocation into and out of the ER; and discuss how protein folding might affect post-translational modification of the polypeptide chain following translocation into the ER lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号