首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Year-to-year variation in phenotypic gender in the monoecious cucurbit, Apodanthera undulata Gray was investigated. Small plants produce no flowers. Larger plants produce only staminate flowers (“male” plants), while a somewhat greater threshold size is necessary for pistillate flower production (cosexual plants). Approximately 85% of the plants that bloomed did not change gender group between years. Two measures of phenotypic gender were used: prospective femaleness, a measure standardized to the population floral ratio, and morphological femaleness, an unstandardized measure. Femaleness of cosexes between years was positively correlated; r values were somewhat greater when using morphological femaleness values. Plants that opened only staminate flowers one year were likely to open only staminate flowers the next year. Similarly, cosexes were likely to be cosexes again the following year, with similar femaleness values. Beyond the threshold size for pistillate flower production, plant size was not correlated with femaleness. These patterns suggest that all plants are male until they reach a certain size and that plants in their cosexual phase may have an intrinsic femaleness tendency due to either genotype or microsite effects.  相似文献   

2.
Sagittaria papillosa Buch. is monoecious with unisexual flowers, pistillate below, staminate above, typically with an unbranched scape. A large population with unusual numbers of staminate and bisexual flowers on the lowest whorl of the inflorescence and many particles was quantitatively evaluated. First-formed inflorescences had more staminate and bisexual flowers than those produced later. Branched scapes were predominantly found to be the second inflorescence produced by a given plant. Genetic crosses between flowers on recemes and panicles produced no branched inflorescences. When grown under greenhouse conditions all tested plants had racemes with pistillate flowers in the lower whorls and staminate ones above. Data from soil parameters, daylengths and air temperatures are compared to reported information on modification of flower sexuality by these factors.  相似文献   

3.
Male plants of spinach (Spinacea oleracea L.) senesce following flowering. It has been suggested that nutrient drain by male flowers is insufficient to trigger senescence. The partitioning of radiolabelled photosynthate between vegetative and reproductive tissue was compared in male (staminate) versus female (pistillate) plants. After the start of flowering staminate plants senesce 3 weeks earlier than pistillate plants. Soon after the start of flowering, staminate plants allocated several times as much photosynthate to flowering structures as did pistillate plants. The buds of staminate flowers with developing pollen had the greatest draw of photosynthate. When the staminate plants begin to show senescence 68% of fixed C was allocated to the staminate reproductive structures. In the pistillate plants, export to the developing fruits and young flowers remained near 10% until mid-reproductive development, when it increased to 40%, declining to 27% as the plants started to senesce. These differences were also present on a sink-mass corrected basis. Flowers on staminate spinach plants develop faster than pistillate flowers and have a greater draw of photosynthate than do pistillate flowers and fruits, although for a shorter period. Pistillate plants also produce more leaf area within the inflorescence to sustain the developing fruits. The (14)C in the staminate flowers declined due to respiration, especially during pollen maturation; no such loss occurred in pistillate reproductive structures. The partitioning to the reproductive structures correlates with the greater production of floral versus vegetative tissue in staminate plants and their more rapid senescence. As at senescence the leaves still had adequate carbohydrate, the resources are clearly phloem-transported compounds other than carbohydrates. The extent of the resource redistribution to reproductive structures and away from the development of new vegetative sinks, starting very early in the reproductive phase, is sufficient to account for the triggering of senescence in the rest of the plant.  相似文献   

4.
The widespread coexistence of male and monoecious (cosexual) plants in Spanish, Portuguese and Moroccan populations of Mercurialis annua , an annual wind-pollinated ruderal, represents an important case of functional androdioecy, a rare breeding system in plants and animals. In M. annua , both males and cosexes disperse fully competent pollen. Quantitative gender varies discontinuously between males and cosexes, with males producing a mean of 6.09 times as much pollen as cosexes. It appears that gender is determined by a simple developmental switch, with male and cosexual inflorescences differing markedly in morphology: staminate flowers are borne on erect peduncles in males and in tight spiral clusters around a subsessile pistillate flower in cosexes. Males do not differ from cosexes in their biomass, but they are significantly taller, principally as a result of their greater internode lengths. The cosexual inflorescence is strongly protogynous so that outcrossing is favoured in dense stands, but seed-set is assured in cosexes isolated from prospective mates because of their ability to self-fertilize. Males typically occur at frequencies of less than about 30% in androdioecious populations, in accordance with theoretical predictions for functional androdioecy. In the genus Mercurialis , dioecy is the ancestral condition and monoecy and androdioecy, which occur in polyploid populations of M. annua , are derived. I argue here that androdioecy is most likely to evolve in plants (1) from dioecy, (2) in wind-pollinated species, and (3) in species with a colonizing habit. These predictions are also consistent with the limited published data available for other species.  相似文献   

5.
The Caricaceae is a small family of tropical trees and herbs in which most species are dioecious. In the present study, we extend our previous work on dioecy in the Caricaceae, characterising the morphological variation in sexual expression in flowers of the dioecious tree Jacaratia mexicana . We found that, in J. mexicana , female plants produce only pistillate flowers, while male plants are sexually variable and can bear three different types of flowers: staminate, pistillate and perfect. To characterise the distinct types of flowers, we measured 26 morphological variables. Our results indicate that: (i) pistillate flowers from male trees carry healthy-looking ovules and are morphologically similar, although smaller than, pistillate flowers on female plants; (ii) staminate flowers have a rudimentary, non-functional pistil and are the only flowers capable of producing nectar; and (iii) perfect flowers produce healthy-looking ovules and pollen, but have smaller ovaries than pistillate flowers and fewer anthers than staminate flowers, and do not produce nectar. The restriction of sexual variation to male trees is consistent with the evolutionary path of dioecy from hermaphrodite ancestors through the initial invasion of male-sterile plants and a subsequent gradual reduction in female fertility in cosexual individuals (gynodioecy pathway), but further work is needed to confirm this hypothesis.  相似文献   

6.
Single gibberellin (A4+7) treatments induced the appearanceof staminate floral buds in several consecutive nodes on themain stem of genetically female cucumber (Cucumis sativus L.).The staminate buds appeared next to pistillate buds which showedvarious degrees of degeneration. Similarly, repeated GA treatmentsinduced the appearance of staminate flowers in otherwise strictlyhermaphrodite plants, next to bisexual flowers. However, thebisexual buds, unlike the pistillate ones, did not show anydeleterious effects of the GA treatment. Therefore, it is inferredthat the hormonally induced staminate buds did not develop bysexual reversion of would-be pistillate or bisexual buds, butrather, represent adventitious buds which, in normally grownfemale or hermaphrodite plants, never develop. It thus seemsthat predetermined pistillate or bisexual buds do not changeinto staminate ones, while change in the reverse direction hasbeen demonstrated in the past (at least for the gynoecious ones). The effectiveness of the GA treatment in the gynoecious plantsshowed an acropetal gradient both within the affected region,as well as along the main stem. Autoradiographic histologicalexaminations showed that the course of development of the inducedstaminate floral bud did not differ from that of normally developingbuds. (Received June 16, 1977; )  相似文献   

7.

Premise

Characterizing the developmental processes in the transition from hermaphroditism to unisexuality is crucial for understanding floral evolution. Amaranthus palmeri, one of the most devastating weeds in the United States, is an emerging model system for studying a dioecious breeding system and understanding the biological traits of this invasive weed. The objectives of this study were to characterize phases of flower development in A. palmeri and compare organogenesis of flower development in female and male plants.

Methods

Flower buds from male and female plants were dissected for light microscopy. Segments of male and female inflorescences at different stages of development were cut longitudinally and visualized using scanning electron microscopy.

Results

Pistillate flowers have two to three styles, one ovary with one ovule, and five obtuse tepals. Staminate flowers have five stamens with five acute tepals. Floral development was classified into 10 stages. The distinction between the two flower types became apparent at stage four by the formation of stamen primordia in staminate flowers, which developed female and male reproductive organs initially, as contrasted to pistillate flowers, which produced carpel primordia only. In staminate flowers, the putative carpel primordia changed little in size and remained undeveloped.

Conclusions

Timing of inappropriate organ termination varies across the two sexes in A. palmeri. Our study suggests that the evolution of A. palmeri from a cosexual ancestral state to complete dioecy is still in progress since males exhibited transient hermaphroditism and females produced strictly pistillate flowers.  相似文献   

8.
Androdioecy is a rare sexual system in nature, as predicted theoretically. Among the androecious species reported so far, Castilla elastica (Moraceae) is unique in that flowers are unisexual and staminate and pistillate flowers on cosexual plants are produced on different inflorescences. In addition, inflorescence structure of staminate inflorescences on males and staminate and pistillate inflorescences on cosexes is markedly different. Staminate inflorescences on males are bivalvate, while staminate inflorescences on cosexes are "fig-like" and urceolate. Pistillate inflorescences are discoidal. The difference may reflect different roles and requirements of the three inflorescences in pollination and protection from herbivores. This study reports thrips pollination of C. elastica, demonstrated by a pollinator introduction experiment. Thrips pollination of the species may be an example of mutualism originating from plant-herbivore interactions. In the Moraceae, shifts from simple herbivores on flowers to pollinators might have occurred many times, evolving into diverse pollination systems including the fig-fig wasp mutualism. The family, of which little is known about pollination systems, provides interesting and unique opportunities to study evolution of pollination systems and roles of nonpollinating associates of inflorescences.  相似文献   

9.
We examined factors affecting the duration of the staminate and pistillate phases in the protandrous flowers of Campanula rapunculoides L. (Campanulaceae). Under conditions of natural pollinator visitation, flowers experiencing low rates of pollen removal lasted significantly longer than flowers that had faster rates of pollen removal. Experimental manipulations showed that low levels of pollen removal resulted in extension of the staminate phase. Hand-pollinations in which we varied the amount and source of pollen showed that when the number of fertilized ovules within an ovary is low, senescence of the flower is delayed, resulting in extension of the pistillate phase. We also report on pollinator foraging patterns within the vertical inflorescences of C. rapunculoides and the limiting factor for seed set in this population. The results are relevent to recent suggestions that floral characters often serve to reduce interference between the sexual functions in cosexual plants.  相似文献   

10.
A population of 54 Ricinocarpos pinifolius (Euphorbiaceae) plants contained male plants, which produced only staminate flowers, and hermaphrodites, which produced staminate and pistillate flowers. The fraction of pistillate flowers ranged continuously from 0 to 0.68. Insect pollination was effective and fruit set virtually complete except for losses to herbivores. Self pollen, outcross pollen from male plants, and outcross pollen from hermaphrodites were all equivalent in viability, germination, tube growth, ovule penetration, and fruit setting ability. Inbreeding depression was manifested as late abortion of some selfed seeds. Geitonogamous selfing is largely prevented by temporal separation of male and female functions within plants. This temporal separation, combined with population-wide synchrony of flowering, may create unusual conditions allowing male plants at low frequency to match hermaphrodites in reproductive success.  相似文献   

11.
杜仲雌雄株细胞学,顶芽及叶含胶量的比较   总被引:14,自引:0,他引:14  
杜仲(EucommiaulmoidesOliv.)为严格的雌雄异株植物,其雌雄株的比例近似于1:1,说明其性别可能由性染色体决定。但在形态上看不到特异的性染色体,雄株花粉母细胞整个减数分裂过程中,同源染色体的配对和分离是正常的。偶尔可发现个别细胞有染色体桥和环状或链状四价体。从1993年和1994年的12月到翌年4月芽完全展开前对顶芽的测量说明,雄株顶芽的长度和最大直径都明显大于雌株的(P<0.01),而整个生长季节中雌株叶子的杜仲胶含量却明显高于雄株的(P<0.01)。不管雄株还是雌株,其叶的含胶量都随季节变化和叶子的长大而降低。实践证明可用芽的大小鉴别杜仲幼株的性别。  相似文献   

12.
Individuals of Phoenix dactylifera L. have expanded pistillodes or pseudocarpels in staminate flowers. These pseudocarpels are located in the centre of the male flowers and are surrounded by stamens. The gynoecium has the characteristic three carpellate arrangement commonly found in female date palm flowers. Pseudocarpels from male flower buds can expand into parthenocarpic fruit. Histology of the expanded pistillodes or pseudotarpels is similar to that of normal carpels from pistillate plants. These pseudocarpels lack ovules. Nutrient medium containing 10 mg 1-1 of 2,4-dichlorophenoxyacetic acid or p-chlorophenylacetic acid and 0.3% activated neutralized charcoal enhanced the development and outgrowth of the pseudocarpels of cultured male flowers.  相似文献   

13.
常绿阔叶树种栲树开花物候动态及花的空间配置   总被引:16,自引:0,他引:16       下载免费PDF全文
 基于定株观测和随机枝取样法,对浙江天童常绿阔叶林内栲树(Castanopsis fargesii)的开花物候动态及其雌花、雄花的空间配置进行了研究。结果表明:在栲树的生殖枝上,并非所有的芽都分化、萌发生成花序,栲树花芽的分化和发育集中在一级生殖枝上。生殖枝上花芽的分化与该枝的空间位置密切相关。栲树花期明显晚于春季的展叶期,与叶片生长时间重叠。盛花期集中于5月下旬,约持续8 d左右,属于同步发生的花期。栲树雄花序的数量明显高于雌花序,雄花序约占花序总数的77.88%,雌花序仅占22.12%。大量雄花和花粉的存在是保证雌花接受花粉和完成受精的基础。花序在植冠层中的空间配置明显不同:在同一植冠内,向阳面和背阴面生殖枝上芽萌发成花序的比率存在明显差异(p<0.01),阳面生殖枝上顶芽萌发成花序的比率高于阴面生殖枝的比率,并且,阳面的每个生殖枝上平均花序数和雄花数量均高于阴面生殖枝,花序的分化和发育与枝系的生长发育状况有密切关系。  相似文献   

14.
对美味猕猴桃同一雌株叶原生质体再生植株进行了形态学、细胞学以及育性特性的比较研究,确认该体细胞无性系性别性状发生变异。其中60%雄性再生植株退化的雌蕊仍保留不同程度的雌性化特征,但雌性全不育;小孢子则能发育成有功能的雄配子体,但有一定的功能缺陷。再生雌株中P1组群性状特征与母株相似;P2组群花发育畸形,导致雌性不育或育性极差。细胞学研究表明,小孢子母细胞减数分裂时染色体异常行为对小孢子发生的影响不能决定其性别类型;雌株类型小孢子败育过程有受基因调控的细胞学特征。认为雌株和雄株小孢子的发育受控于不同的基因体系,具性别的特异性。再生植株性别性状发生变异可能是性别控制基因或染色体发生结构性变异所致。母株染色体上累积的结构性变异与该遗传基础具易变性密切有关。  相似文献   

15.
Flowers of three pistillate (female), two heterogametic staminate (male) and two homogametic male genotypes of Asparagus officinalis L. were compared for morphology and vascular anatomy of the flower and for embryological development to the stage of mature ovules and pollen. Flowers are liliaceous, the staminate with rudimentary pistils and the pistillate with collapsed anthers. The uncomplicated vascular pattern differs between staminate and pistillate flowers only in the size and degree of maturation of bundles to stamens and carpels. Longer styles appear to be correlated with a greater extent of ovule development in ovaries of staminate flowers. Microsporogenesis in males is normal with wall development corresponding to the Monocotyledonous type. The tapetum is glandular and binucleate, cytokinesis successive, the tetrads isobilateral or occasionally decussate, and the mature pollen grain two-celled. A pair of heteromorphic, possibly sex, chromosomes was observed in heterogametic male plants. Anther development is initially the same in pistillate flowers, but the tapetum degenerates precociously followed by collapse of microspore mother cells. In pistillate flowers the ovules are hemitropous, bitegmic, and slightly crassinucellate. Megasporogenesis-megagametogenesis conforms to the Polygonum type. In staminate flowers ovule development is like that in pistillate flowers until degeneration starts in nucellar and integumentary cells at the chalazal end. Ovules in both homogametic male genotypes rarely complete meiosis, while in the heterogametic males it is normally completed with about one ovule in 20 flowers forming a mature megagametophyte. Since manipulation of sex expression in Asparagus could be important in developing inbred male and female lines for breeding purposes, those aspects of the morphological and embryological observations presented which might be useful in planning experiments to induce sex changes are discussed briefly.  相似文献   

16.
On palo verde trees, nearly 80% of potential offspring were lost during flower bud development. Flower buds at the base of racemes developed earliest and were more likely to survive depredations of gelechiid larvae or abortion from putative limited resources. Herbivory accounted for greater cumulative losses than putative resources; however, an herbivore exclusion experiment suggested that buds damaged by herbivores would have aborted anyway without damage. In a natural experiment, plants that received water runoff had significantly higher densities of racemes, with only slight increases in numbers of buds, flowers, or pods per raceme. Similarly, thinning racemes experimentally to assess limited resources among potentially competing racemes increased the number of viable flower buds per raceme only slightly, with negligible herbivore damage. The production of more racemes rather than more reproductive structures per raceme may be a mechanism to allocate limited resources more efficiently. Alternatively, in studies with animals, similar patterns in the production of broods are thought to be mechanisms to avoid nest predation. Thus, while putative limited resources and resource allocation patterns reduced the proximate effects of larvae, herbivory must be considered as a possible ultimate factor in the patterns observed here because limited resources may be allocated in ways to reduce herbivory.  相似文献   

17.

Background and Aims

The distribution and differentiation times of flowers in monoecious wind-pollinated plants are fundamental for the understanding of their mating patterns and evolution. Two closely related South American Nothofagus species were compared with regard to the differentiation times and positions of staminate and pistillate flowers along their parent growth units (GUs) by quantitative means.

Methods

Two samples of GUs that had extended in the 2004–2005 growing season were taken in 2005 and 2006 from trees in the Lanín National Park, Patagonia, Argentina. For the first sample, axillary buds of the parent GUs were dissected and the leaf, bud and flower primordia of these buds were identified. The second sample included all branches derived from the parent GUs in the 2005–2006 growing season.

Key Results

Both species developed flowering GUs with staminate and/or pistillate flowers; GUs with both flower types were the most common. The position of staminate flowers along GUs was similar between species and close to the proximal end of the GUs. Pistillate flowers were developed more distally along the GUs in N. alpina than in N. obliqua. In N. alpina, the nodes bearing staminate and pistillate flowers were separated by one to several nodes with axillary buds, something not observed in N. obliqua. Markovian models supported this between-species difference. Flowering GUs, including all of their leaves and flowers were entirely preformed in the winter buds.

Conclusions

Staminate and pistillate flowers of N. alpina and N. obliqua are differentiated at precise locations on GUs in the growing season preceding that of their antheses. The differences between N. alpina and N. obliqua (and other South American Nothofagus species) regarding flower distribution might relate to the time of anthesis of each flower type and, in turn, to the probabilities of self-pollination at the GU level.Key words: Branch, bud, growth unit, Markovian models, Nothofagus alpina, N. obliqua, Patagonian forests, pistillate flower, preformation, staminate flower  相似文献   

18.

Background and Aims

Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant''s pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest.

Methods

Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined.

Key Results

Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation.

Conclusions

The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant''s pollination success in the face of leaf herbivory stress.  相似文献   

19.
郭金  杨小艳  邓洪平 《植物学报》2017,52(2):202-209
已有的资料将柃木属(Eurya)描述为严格的雌雄异株植物, 性别变异现象极为少见。目前仅在柃木(E. japonica)和钝叶柃(E. obtusifolia)等少数种类中报道过两性花的存在。近几年笔者发现细枝柃(E. loquaiana)存在性别变异现象, 性别变异株上具有不同性别类型的花。该文从单花和植株水平分析了细枝柃的性别表达特性, 并对不同类型花的花部构件生物量分配进行比较分析。结果表明, 细枝柃具有6种类型的花, 从单花水平上看, 细枝柃性别有雌性、雄性及两性3种类型; 细枝柃性别在植株水平上体现较为复杂, 有雌株, 雄株, 雌花和两性花同株, 雄花和两性花同株, 雌雄异花同株及雌花、雄花、两性花同株6种类型; 在细枝柃花部构件生物量分配中, 雄花(包括雄株花和变异株雄花)花部构件生物量分配中雄蕊生物量的分配低于雌花(包括雌株花和变异株雌花)中雌蕊生物量的分配; 两性花中, 雄蕊生物量分配低于雌蕊, 这是其优化资源分配的手段, 进而获取最大适合度收益。  相似文献   

20.
The sequence of floral events during anthesis was examined in Streptanthus tortuosus to determine the relationship between the male and female floral phases. The flowers are strongly protandrous. In the staminate phase, the anthers mature sequentially over a 3–4-day period. Because pollinators quickly remove pollen from the anthers, sequential anther maturation prolongs the male phase relative to what it would be if anthers did not mature sequentially. Pollen applied to the stigma during the staminate phase does not adhere readily and does not germinate. The length of the pistillate phase depends on pollinator activity, as pollination accelerates the abscission of floral parts. Unpollinated flowers remain pistillate for 3–4 days, during which time stigmatic receptivity declines gradually. In the field, 72% to 80% of flowers are staminate at any time, indicating that the staminate phase is three times longer than the pistillate phase when pollinators have access to the flowers. The consequences of the relative length of the floral phases and the schedule of stigmatic receptivity are discussed in terms of outcrossing mechanism, floral longevity, and sexual selection models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号