首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Root architecture remodeling induced by phosphate starvation   总被引:1,自引:0,他引:1  
Plants have evolved efficient strategies for utilizing nutrients in the soil in order to survive, grow and reproduce. Inorganic phosphate (Pi) is a major macroelement source for plant growth; however, the availability and distribution of Pi are varying widely across locations. Thus, plants in many areas experience Pi deficiency. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition, limit Pi consumption and adjust Pi recycling internally under Pi starvation conditions. This review focuses on the molecular regulators that modulate Pi starvation-induced root architectural changes.Key words: auxin, phosphate deficiency, root system architecture modulation  相似文献   

5.
Predator presence can create a “landscape of fear,” which is defined as the spatially explicit distribution of perceived predation risk as seen by prey. Prey species can alter their behavior and space use as a response to increased predation risk, which might be traded off with energetic requirements. Thus, whether or not an anti-predator behavior is performed might depend on the perceived risk. In this study, we investigated the behavioral and spatial response of the European hare (Lepus europaeus) toward the presence of a predator scent, using red fox (Vulpes vulpes) scat, an unfamiliar control scent (butyric acid), and a true control (no scent). We collected data on hare activity times and behavior using 50 camera trap locations and spatial data using GPS telemetry (30,481 GPS positions of 12 hares). Hares showed spatial anti-predator behaviors within their home range, for example, the local avoidance of areas treated with scent and remaining further from field edges, in response to sympatric predator scent and partly also in response to unfamiliar butyric acid. Conversely, more costly anti-predator behaviors, that is, increased vigilance at the expense of foraging, were only shown in response to the predator scent. Our results suggest that prey species respond flexibly toward scent cues, utilizing less costly anti-predator behaviors independent of the perceived threat, whereas costly anti-predator responses are only used in the presence of “real” threat. Further, our findings emphasize that a combination of camera trap and GPS data can provide detailed information on animal behavior and space use, and caution that interpretation of one data source alone might lead to incomplete conclusions.  相似文献   

6.
Phosphate (Pi) is a common limiter of plant growth due to its low availability in most soils. Plants have evolved elaborate mechanisms for sensing Pi deficiency and for initiating adaptive responses to low Pi conditions. Pi signaling pathways are modulated by both local and long-distance, or systemic, sensing mechanisms. Local sensing of low Pi initiates major root developmental changes aimed at enhancing Pi acquisition, whereas systemic sensing governs pathways that modulate expression of numerous genes encoding factors involved in Pi transport and distribution. The gaseous phytohormone ethylene has been shown to play an integral role in regulating local, root developmental responses to Pi deficiency. Comparatively, a role for ethylene in systemic Pi signaling has been more circumstantial. However, recent studies have revealed that ethylene acts to modulate a number of systemically controlled Pi starvation responses. Herein we highlight the findings from these studies and offer a model for how ethylene biosynthesis and responsiveness are integrated into both local and systemic Pi signaling pathways.  相似文献   

7.
8.
The ecological trade-off between developmental time and starvation resistance, acting in a heterogeneous environment, can promote the coexistence of competing species. Heterogeneity results from variation in the vegetation that influences both abiotic (e.g. temperature, humidity) and biotic (e.g. fruit availability during the year) aspects of the environment. In this study, we investigated whether differences between collection sites have led to local differentiation of the two life-history traits underlying the coexistence model: developmental time and starvation resistance. Drosophila were collected from four collection sites, ranging from grassland to secondary forest, along a transect of 15 km. The microclimatic and vegetation differences among these collection sites were considerable. For developmental time, different species showed similar genetic responses to the (habitat) differences between the different collection sites. The shortest developmental times were found in the secondary forest populations and the agricultural area populations, the longest in the grassland populations, and the forest edge populations were intermediate. However, there was no correlation between the habitat ranking based on disturbance and canopy cover, and the ranking of the developmental times. Furthermore, the data did not confirm the generality of the positive correlation between developmental time and starvation underlying the coexistence model.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87 , 115–125.  相似文献   

9.
Phosphorus is an essential macronutrient for plant growth and development. Root system architecture (RSA) affects a plant's ability to obtain phosphate, the major form of phosphorus that plants uptake. In this review, I first consider the relationship between RSA and plant phosphorus-acquisition efficiency, describe how external phosphorus conditions both induce and impose changes in the RSA of major crops and of the model plant Arabidopsis, and discuss whether shoot phosphorus status affects RSA and whether there is a universal root developmental response across all plant species. I then summarize the current understanding of the molecular mechanisms governing root developmental responses to phosphorus deficiency. I also explore the possible reasons for the inconsistent results reported by different research groups and comment on the relevance of some studies performed under laboratory conditions to what occurs in natural environments.  相似文献   

10.
11.
Molecular mechanisms in response to phosphate starvation in rice   总被引:1,自引:0,他引:1  
Phosphorus is one of the most important elements that significantly affect plant growth and metabolism. Among the macro-nutrients, phosphorus is the least available to the plants as major phosphorus content of the fertiliser is sorbed by soil particles. An increased knowledge of the regulatory mechanisms controlling plant's phosphorus status is vital for improving phosphorus uptake and P-use efficiency and for reducing excessive input of fertilisers, while maintaining an acceptable yield. Phosphorus use efficiency has been studied using forward and reverse genetic analyses of mutants, quantitative genomic approaches and whole plant physiology but all these studies need to be integrated for a clearer understanding. We provide a critical overview on the molecular mechanisms and the components involved in the plant during phosphorus starvation. Then we summarize the information available on the genes and QTLs involved in phosphorus signalling and also the methods to estimate total phosphate in plant tissue. Also, an effort is made to build a comprehensive picture of phosphorus uptake, homeostasis, assimilation, remobilization, its deposition in the grain and its interaction with other micro- and macro-nutrients as well as phytohormones.  相似文献   

12.
Signaling components involved in plant responses to phosphate starvation   总被引:2,自引:0,他引:2  
Phosphorus is one of the macronutrients essential for plant growth and development. Many soils around the world are deficient in phosphate (Pi) which is the form of phosphorus that plants can absorb and utilize. To cope with the stress of Pi starvation, plants have evolved many elaborate strategies to enhance the acquisition and utilization of Pi from the environment. These strategies include morphological, biochemical and physiological responses which ultimately enable plants to better survive under low Pi conditions. Though these adaptive responses have been well described because of their ecological and agricultural importance, our studies on the molecular mechanisms underlying these responses are still in their infancy. In the last decade, significant progresses have been made towards the identification of the molecular components which are involved in the control of plant responses to Pi starvation. In this article, we first provide an overview of some major responses of plants to Pi starvation, then summarize what we have known so tar about the signaling components involved in these responses, as well as the roles of sugar and phytohormones.  相似文献   

13.
14.
15.
Root branching responses to phosphate and nitrate   总被引:3,自引:0,他引:3  
Plant roots favour colonization of nutrient-rich zones in soil. Molecular genetic evidences demonstrate that roots sense and respond to local and global concentrations of inorganic phosphate and nitrate, in a fashion that depends on the shoot nutrient status. Recent investigations in Arabidopsis highlighted the role of the root tip in phosphate sensing and attributed to already known proteins (multicopper oxidases and nitrate transporters) new and unexpected functions in the root growth response to phosphate or nitrate.  相似文献   

16.
Phosphorus (P) is an essential constituent in all types of living organisms. Bacteria, which use inorganic phosphate (Pi), as the preferred P source, have evolved complex systems to survive during Pi starvation conditions. Recently, we found thatPseudomonas aeruginosa, a monoflagellated, obligately aerobic bacterium, is attracted to Pi. The evidence that the chemotactic response to Pi (Pi taxis) was observed only with cells grown in Pi-limiting medium suggests that Pi taxis plays an important role in scavenging Pi residues under conditions of Pi starvation. Many bacteria also exhibit rapid and extensive accumulation of polyphosphate (polyP), when Pi is added to cells previously subjected to Pi starvation stress. Since polyP can serve as a P source during Pi starvation conditions, it is likely that polyP accumulation is a protective mechanism for survival during Pi starvation. In the present review, we summarize our current knowledge on regulation of bacterial Pi taxis and polyP accumulation in response to Pi starvation stress.  相似文献   

17.
M. Foti  S. Dho 《Plant biosystems》2016,150(3):429-435
Tobacco plants under low phosphate exhibited increased total and tap root length, as a result of higher apex activity, but decreased root branching in comparison with the plants grown with high Pi. The possible mechanisms and significance of these alterations, which differed from those typical of stress-induced morphogenetic responses, are discussed.  相似文献   

18.
When the outside of cell is stimulated,the inside generates a flurry of signals. Phosphates are sprinkled over lipids and proteins,where they are recognized within diverse signaling pathways. The kinases that congregate beneath the cell surface to provide the phosphate tags that mediate signaling have become major targets of new wave of drug design. Phosphoinositide signaling presents a particularly intriguing network whose many mysteries are now being unlocked. Research into protein domains that specifically recognize phosphoinositides have established the ENTH, FYVE,Phox,and pleckstrin homology domains s four cornerstones of phosphoinositide signaling.  相似文献   

19.
20.
Predicting likely species responses to an alteration of their local environment is key to decision‐making in resource management, ecosystem restoration and biodiversity conservation practice in the face of global human‐induced habitat disturbance. This is especially true for forest trees which are a dominant life form on Earth and play a central role in supporting diverse communities and structuring a wide range of ecosystems. In Europe, it is expected that most forest tree species will not be able to migrate North fast enough to follow the estimated temperature isocline shift given current predictions for rapid climate warming. In this context, a topical question for forest genetics research is to quantify the ability for tree species to adapt locally to strongly altered environmental conditions (Kremer et al. 2012 ). Identifying environmental factors driving local adaptation is, however, a major challenge for evolutionary biology and ecology in general but is particularly difficult in trees given their large individual and population size and long generation time. Empirical evaluation of local adaptation in trees has traditionally relied on fastidious long‐term common garden experiments (provenance trials) now supplemented by reference genome sequence analysis for a handful of economically valuable species. However, such resources have been lacking for most tree species despite their ecological importance in supporting whole ecosystems. In this issue of Molecular Ecology, De Kort et al. ( 2014 ) provide original and convincing empirical evidence of local adaptation to temperature in black alder, Alnus glutinosa L. Gaertn, a surprisingly understudied keystone species supporting riparian ecosystems. Here, De Kort et al. ( 2014 ) use an innovative empirical approach complementing state‐of‐the‐art landscape genomics analysis of A. glutinosa populations sampled in natura across a regional climate gradient with phenotypic trait assessment in a common garden experiment (Fig. 1 ). By combining the two methods, De Kort et al. ( 2014 ) were able to detect unequivocal association between temperature and phenotypic traits such as leaf size as well as with genetic loci putatively under divergent selection for temperature. The research by De Kort et al. ( 2014 ) provides valuable insight into adaptive response to temperature variation for an ecologically important species and demonstrates the usefulness of an integrated approach for empirical evaluation of local adaptation in nonmodel species (Sork et al. 2013 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号