首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poor phylogenetic resolution and inconsistency of gene trees are major complications when attempting to construct trees of life for various groups of organisms. In this study, we addressed these issues in analyses of the genus Carpinus (hornbeams) of the Betulaceae. We assembled and annotated the chloroplast (cp) genomes (plastomes) of nine hornbeams representing main clades previously distinguished in this genus. All nine plastomes are highly conserved, with four regions, and about 158–160 kb long, including 121–123 genes. Phylogenetic analyses of whole plastome sequences, noncoding sequences, and the well‐aligned coding genes resulted in high resolution of the sampled species in contrast to the failure based on a few cpDNA markers. Phylogenetic relationships in a few clades based only on the coding genes are slightly inconsistent with those based on the noncoding and total plastome datasets. Moreover, these plastome trees are highly incongruent with those based on bi‐parentally inherited internal transcribed spacer (ITS) sequence variations. Such high inconsistencies suggest widespread occurrence of incomplete lineage sorting and hybrid introgression during diversification of these hornbeams.  相似文献   

2.
Hypotheses of evolutionary relationships among the Australian wild perennial relatives of soybean (Glycine subgenus Glycine) are based largely on patterns of meiotic pairing in intra- and interspecific experimental hybrids. This evidence has indicated a number of genome groupings within the subgenus but has not resolved most phylogenetic relationships. Restriction-endonuclease site variation of chloroplast DNA (cpDNA) within the perennial subgenus is reported here, representing a sampling of approximately 3% of the approximately 150-kilobase plastome. Seven hundred twenty-one unique restriction sites were compared within Glycine using 29 restriction endonucleases; 157 sites varied within the genus. Distance and parsimony methods using these data yielded congruent results, recognizing the existence of three major groups within subgenus Glycine: the species-rich and geographically diverse A clade consisting of G. canescens and related taxa; the B clade, which includes the stoloniferous species; and the C group, containing two species with distinctive curved pods. These results are in general agreement with hypotheses based on genome analysis; inconsistencies involve the inclusion of genetically divergent taxa such as G. falcata in well-supported plastome clades comprised of otherwise interfertile species. Such findings are not unexpected if crossing barriers are considered to be unique features of such anomalous species, paralleling their often numerous morphological and cpDNA autapomorphies. Consideration of cpDNA divergence within the three major clades of subgenus Glycine indicates that the rate of plastome evolution is uncoupled from rates of morphological or ecological diversification.  相似文献   

3.
Phylogenetic resolution is often low within groups of recently diverged taxa due to a paucity of phylogenetically informative characters. We tested the relative utility of seven noncoding cpDNA regions and a pair of homoeologous nuclear genes for resolving recent divergences, using tetraploid cottons (Gossypium) as a model system. The five tetraploid species of Gossypium are a monophyletic assemblage derived from an allopolyploidization event that probably occurred within the last 0.5-2 million years. Previous analysis of cpDNA restriction site data provided only partial resolution within this clade despite a large number of enzymes employed. We sequenced three cpDNA introns (rpl16, rpoC1, ndhA) and four cpDNA spacers (accD-psaI, trnL-trnF, trnT-trnL, atpB-rbcL) for a total of over 7 kb of sequence per taxon, yet obtained only four informative nucleotide substitutions (0.05%) resulting in incomplete phylogenetic resolution. In addition, we sequenced a 1.65-kb region of a homoeologous pair of nuclear-encoded alcohol dehydrogenase (Adh) genes. In contrast with the cpDNA sequence data, the Adh homoeologues yielded 25 informative characters (0.76%) and provided a robust and completely resolved topology that is concordant with previous cladistic and phenetic analyses. The enhanced resolution obtained using the nuclear genes reflects an approximately three- to sixfold increase in nucleotide substitution rate relative to the plastome spacers and introns.  相似文献   

4.
Summary Oenothera plants homozygous for a recessive allele at the plastome mutator (pm) locus show non-Mendelian mutation frequencies that are 1000-fold higher than spontaneous levels. Chloroplast DNA (cpDNA) was isolated from nine mutants and two green isolates of the plastome mutator line. cpDNA restriction patterns were compared to cpDNA from a representative of the progenitor Johansen strain, and cpDNAs from all eleven plastome mutator lines show changes of fragment mobility due to deletion events at five discrete regions of the plastome. Most of the mutants have cpDNA restriction patterns identical to that of one of the green isolates from the plastome mutator line, and therefore, most of the differences in fragment length are probably not responsible for the mutant phenotypes. In contrast to the plastome mutator line, cpDNA from several populations of a closely related wild-type Oenothera species have few restriction fragment length polymorphisms. This suggests that both mutation frequencies and site-specific cpDNA deletions are elevated in the plastome mutator line, and implicates a defect in the cpDNA repair or replication machinery.  相似文献   

5.
The B genome of Glycine subgenus Glycine comprises three diploid species whose monophyly is supported by morphological, crossing, and chloroplast DNA (cpDNA) data. Previous cpDNA studies indicated low levels of divergence among these taxa and failed to resolve cladistic relationships among them. More intensive studies of cpDNA variation were initiated, using additional restriction endonucleases and accessions. Results from cladistic analyses of over 50 restriction site characters indicate that there is considerable cpDNA polymorphism within this group of species, with a minimum of 27 plastome types occurring among the 74 accessions sampled. Levels of homoplasy observed in this group are relatively high (15%) for closely related congeneric species. There is only limited congruence between plastome type and taxonomic classification based on morphological characters. Explanations for this lack of concordance include: 1) the early state of taxonomic understanding in this group, 2) lack of resolution in the cpDNA tree caused by homoplasy and the small number of synapomorphic characters, 3) introgression among these interfertile, often sympatric taxa, and 4) maintenance of ancestral cpDNA polymorphisms resulting in shared plastomes among species.  相似文献   

6.
Past work involving the plastid genome (plastome) of holoparasitic plants has been confined to Scrophulariaceae (or Orobanchaceae) which have truncated plastomes owing to loss of photosynthetic and other genes. Nonasterid holoparasites from Balanophoraceae (Corynaea), Hydnoraceae (Hydnora) and Cytinaceae (Cytinus) were tested for the presence of plastid genes and a plastome. Using PCR, plastid 16S rDNA was successfully amplified and sequenced from the above three holoparasites. The sequence of Cytinus showed 121 single base substitutions relative to Nicotiana (8% of the molecule) whereas higher sequence divergence was observed in Hydnora and Corynaea (287 and 513 changes, respectively). Secondary structural models for these 16S rRNAs show that most changes are compensatory, thus suggesting they are functional. Probes constructed for 16S rDNA and for four plastid-encoded ribosomal protein genes (rps2, rps4, rps7 and rpl16) were used in Southern blots of digested genomic DNA from the three holoparasites. Positive hybridizations were obtained using each of the five probes only for Cytinus. For SmaI digests, all plastid gene probes hybridized to a common fragment ca. 20 kb in length in this species. Taken together, these data provide preliminary evidence suggestive of the retention of highly diverged and truncated plastid genome in Cytinus. The greater sequence divergence for 16S rDNA and the negative hybridization results for Hydnora and Corynaea suggests two possibilities: the loss of typically conserved elements of their plastomes or the complete absence of a plastome.  相似文献   

7.
The population genetic structure of the Australian plant Lambertia orbifolia was investigated for chloroplast DNA (cpDNA) and rDNA based on restriction fragment length polymorphism. Variation was assessed in 14-20 individuals from six populations with probes covering the majority of the chloroplast genome and the whole rRNA gene unit. For cpDNA, eight mutations were detected which were distributed over five haplotypes. Nucleotide diversity in the species was high and the majority of this diversity was distributed between populations with diversity within populations restricted to a single population. There was significant differentiation between the two regions in the species distribution with the Narrikup region being distinguished by a single haplotype that was characterized by six unique mutations. Variation in rDNA was detected with three gene length variants present in most individuals. However, the Narrikup region was characterized by homogenization of the gene unit to a single length variant in all individuals. The divergence of the Narrikup region suggests that the disjunction in the species distribution has been present for a long time and the two regions represent separate evolutionary lineages.  相似文献   

8.
Evolutionary relationships within the compariumSedum seriesRupestria (Crassulaceae) were investigated by phylogenetic analyses of restriction site variation of the chloroplast genome and morphological variation. DNAs were digested with 21 restriction enzymes and hybridized withS. album cpDNA probes covering the entire genome. A total of 141 ingroup variable restriction sites was identified. Morphological variation was observed in a total of 66 characters. Both datasets were analysed using parsimony methods and compared with evidence from cytology, artificial hybridization and biogeography to infer evolutionary relationships. The results 1) indicate a relatively high level of nucleotide sequence divergence withinS. ser.Rupestria; 2) indicate three main lines of plastome differentiation, which are in agreement with morphology, basic chromosome numbers, and centres of diversity; 3) do not provide a compelling solution for basal relationships; 4) support an earlier hypothesis on reticulation and provide evidence for a third case of allopolyploidy in the series; 5) suggest that interspecific gene flow inS. ser.Rupestria is funnelled through the presumably allopolyploidS. rupestre subsp.erectum.  相似文献   

9.
This study aimed at the indentification of the species and genotypes of the genus Crataegus in Syria and determination of the genetic relationships among them based on the analysis of genomic and chloroplast DNA (cpDNA) using ISSRs and CAPS techniques. Morphological characterization carried out on 49 Crataegus samples collected from different geographical regions of Syria revealed four Crataegus species: C. monogyna, C. sinaica, C. aronia and C. azarolus. In the dendrogram constructed for those samples based on ISSRs (20 primers), all samples that belong to C. monogyna were clustered in one cluster. Samples of the other three species were overlaped in another cluster. Two samples of these were the most distant from all other samples in the dendrogram and were suggested to represent hybrid species or subspecies. When CAPS technique was applied on four Crataegus samples that represent the four suggested species using 22 cpDNA regions and 90 endonucleases, no polymorphism was detected neither in amplification products sizes nor in restriction profiles. The inability of detection of variation in cpDNA among species suggested can be attributed to the low level of evolution of the cpDNA in the genus, and to the possibility that some of these species are either subspecies or hybrids since the cpDNA is inherited through one parent only.  相似文献   

10.
Datisca (Datiscaceae) is a ditypic genus with an intercontinentally disjunct distribution. Chloroplast DNA restriction site data was obtained from 23 populations and four 10–20 year old herbarium specimens ofD. glomerata and three populations ofD. cannabina from throughout their geographic ranges in western North America and southwest-central Asia, respectively. InD. glomerata, plastome diversity is partitioned geographically. All populations from southern California have a common plastome, while most populations north of this region share a relatively divergent plastome (0.49% sequence divergence). Likewise, these plastomes are highly divergent (0.87% mean sequence divergence) from those found inD. cannabina. Biogeographic processes dating to the Pleistocene and Late Miocene may be responsible for these intra- and interspecific patterns of chloroplast DNA divergence.  相似文献   

11.
Forty-four Thai isolates phenotypically assigned to the genus Gluconobacter were examined for 16S-23S rDNA ITS restriction analysis by MboII and SduI (=Bsp1286I) digestions. The Thai isolates tested were divided into seven groups: Group I for fourteen isolates, Group IX for one isolate, Group X for two isolates, Group V-2 for four isolates, Group XI for three isolates, Group IV for one isolate, and Group III for nineteen isolates. There were no isolates of either Group II or Group V-1 that were identified as G. cerinus. The isolates of Group III, Group IV, and Group XI were subjected to an additional 16S-23S rDNA ITS restriction analysis by AvaII, TaqI, BsoBI, and BstNI digestions. The isolates of Group III were divided into three groups and two subgroups: Group III-2 for five isolates, Group III-6 for two isolates, and Group III-4, which was divided into two subgroups, Subgroup III-4a for four isolates and Subgroup III-4b for eight isolates. The fourteen isolates of Group I were identified as G. oxydans, and the two isolates of Group X were temporarily identified as G. oxydans. The five isolates of Group III-2 and the one isolate of Group IV were identified as G. frateurii. The remaining twenty-two isolates of Group V-2, Group III-4, Group III-6, Group IX, and Group XI were not identified but are candidates for several new species.  相似文献   

12.
Hybrids between European and Japanese larches combine the properties of both parental species (drought resistance, canker resistance, stem straightness) and exhibit a fast growth rate. They are produced in seed orchards, generally by natural pollination. Seeds are collected and used for afforestation as interspecific hybrids. However, there are no convenient tests to assess the interspecific hybrid proportion. In the present study, we developed diagnostic molecular markers suitable for the individual identification of hybrids, whatever their developmental stage. Our strategy involved testing a combination of maternally inherited markers from the mitochondrial genome (mtDNA) and paternally inherited markers from the chloroplast genome (cpDNA). Hybrids were then identified by the presence of a mitochondrial sequence inherited from one parental species and a chloroplast sequence inherited from the other parental species. To achieve this aim, markers discriminating both parental species were first sought. Amplifications of mitochondrial and chloroplast sequences were performed using specific PCR primers. After testing 33 primer pairs in combination with nine restriction enzymes, we detected one mitochondrial marker, f13 which was amplified in Japanese larch and absent in European larch, and one chloroplast marker, ll-TaqI which showed different restriction patterns depending on the species. A restriction fragment of 601 bp was obtained in Japanese larch while two fragments of 120 bp and 481 bp were observed in European larch. These patterns were found in all 197 individuals tested from the two pure species. These markers were then used for the evaluation of the hybrid proportion in a seed lot produced from seed orchards; this was assessed as between 43% and 53% depending on the parental species. The male and female parental species could be determined for each progeny.Communicated by D.B. Neale  相似文献   

13.
The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome–genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I–III in one clade, while plastome IV appears to be closest to the common ancestor.  相似文献   

14.
Ryzhova NN  Kochieva EZ 《Genetika》2004,40(8):1093-1098
Six plastome microsatellites were examined in 43 accessions of the genus Capsicum. In total, 33 allelic variants were detected. A specific haplotype of chloroplast DNA was identified for each Capsicum species. Species-specific allelic variants were found for most wild Capsicum species. The highest intraspecific variation was observed for the C. baccatum plastome. Low cpDNA polymorphism was characteristic of C. annuum: the cpSSRs were either monomorphic or dimorphic. The vast majority of C. annuum accessions each had alleles of one type. Another allele type was rare and occurred only in wild accessions. The results testified again to genetic conservation of C. annuum and especially its cultivated forms. The phylogenetic relationships established for the Capsicum species on the basis of plastome analysis were similar to those inferred from the morphological traits, isozyme patterns, and molecular analysis of the nuclear genome.  相似文献   

15.
通过对甘草属乌拉尔甘草(Glycyrrhiza uralensis)、光果甘草(G.glabra)、胀果甘草(G.inflata)及其人工杂交种组合G.uralensis♀×G.glabra♂、G.glabra♀×G.uralensis♂、G.uralensis♀×G.inflata♂、G.inflata♀×G.uralensis♂共68份材料的核基因ITS序列、叶绿体rbc L、mat K、trn H-psb A基因的序列分析,探讨了甘草属叶绿体DNA遗传方式。结果表明:(1)亲本种和人工杂交种ITS序列长度均为614 bp,其中34份人工杂交种ITS序列存在4处变异位点,且人工杂交种均检测出来自父本、母本ITS序列相同位点碱基的叠加,检测率为100%。(2)亲本种与人工杂交种的叶绿体基因rbc L、mat K、trn H-psb A序列长度相同,共有4处变异位点,人工杂交种在变异位点处的碱基与其相对应的父本碱基一致率高达97.1%。以上结果说明,该研究获得34份人工杂交种为100%杂交成功的F_1子代,核基因ITS序列可用于甘草属杂交种的遗传鉴定;甘草属叶绿体rbcL、mat K、trn H-psb A基因具有父系遗传特性,推测甘草属质体的遗传方式主要表现为父系遗传,这种质体遗传方式的发现为甘草属杂交种和遗传多样性研究提供了新的认识,也为杂交种的亲本鉴定提供分子依据。  相似文献   

16.
This study aimed at the indentification of the species and genotypes of the genus Crataegus in Syria and determination of the genetic relationships among them based on the analysis of genomic and chloroplast DNA (cpDNA) using ISSRs and CAPS techniques. Morphological characterization carried out on 49 Crataegus samples collected from different geographical regions of Syria revealed four Crataegus species: momogyna, C. sinaica, C. aronia and C. azarolus. In the dendrogram constructed for those samples based on ISSRs (20 primers), all samples that belong to C. monogyna were clustered in one cluster. Samples of the other three species were overlaped in another cluster. Two samples of these were the most distant from all other samples in the dendrogram and were suggested to represent hybrid species or subspecies. When CAPS technique was applied on four Crataegus samples that represent the four suggested species using 22 cpDNA regions and 90 endonucleases, no polymorphism was detected neither in amplification products sizes nor in restriction profiles. The inability of detection of variation in cpDNA among species suggested can be attributed to the low level of evolution of the cpDNA in the genus, and to the possibility that some of these species are either subspecies or hybrids since the cpDNA is inherited through one parent only.  相似文献   

17.
Restriction site variation in chloroplast DNAs (cpDNAs) of Coreopsis section Coreopsis was employed to assess divergence and phylogenetic relationships among the nine species of the section. A total of fourteen restriction site mutations and one length mutation was detected. Cladistic analysis of the cpDNA data produced a phylogeny that is different in several respects from previous hypotheses. CpDNA mutations divide the section into two groups, with the two perennial species C. auriculata and C. pubescens lacking any derived restriction site changes. The other seven species are united by five synapomorphic restriction site mutations and the one length mutation. These seven species fall into three unresolved clades consisting of 1) the remaining three perennial species, C. grandiflora, C. intermedia, and C. lanceolata; 2) three annual species, C. basalis, C. nuecensoides, and C. nuecensis; and 3) the remaining annual, C. wrightii. The cpDNA data suggest that, although the perennial habit is primitive within the section, the annual species of section Coreopsis have likely not originated from an extant perennial species. The estimated proportion of nucleotide differences per site (given as 100p) for the cpDNAs of species in the section ranges from 0.00 to 0.20, which is comparable to or lower than values reported for other congeneric species. The low level of cpDNA divergence is concordant with other data, including cross compatibility, interfertility and allozymes, in suggesting that species of the section are not highly divergent genetically.  相似文献   

18.
用DNA指纹图谱分析了甘薯(Ipomoea batatasLam.)徐薯18和AB78-1品系及它们的正反交子代叶绿体DNA,结果显示子代叶绿体DNA指纹均与母本相同,而未发现与父本或双亲相同的指纹图谱,因此在该杂交组合中质体遗传方式为母系遗传,这个结论与先前根据细胞学研究所推测的甘薯质体遗传试不同。表明旋花科植物可能并不存在一个一致的父系或双亲质体传递模式。DNA指纹图谱分析用于质体遗传的研究尚未见报道,本文对其优越性进行了讨论。  相似文献   

19.
The nucleotide sequence of the complete chloroplast genome of a basal angiosperm, Calycanthus fertilis, has been determined. The circular 153337 bp long cpDNA is colinear with those of tobacco, Arabidopsis and spinach. A total of 133 predicted genes (115 individual gene species, 18 genes duplicated in the inverted repeats) including 88 potential protein-coding genes (81 gene species), 8 ribosomal RNA genes (4 gene species) and 37 tRNA genes (30 gene species) representing 20 amino acids were identified based on similarity to their homologs from other chloroplast genomes. This is the highest gene number ever registered in an angiosperm plastome. Calycanthus fertilis cpDNA also contains a homolog of the recently discovered mitochondrial ACRS gene. Since no gene transfer from mitochondria to the chloroplast has ever been documented, we investigated the evolutionary affinity of this gene in detail. Phylogenetic analysis of the protein-coding subset of the plastome suggests that the ancient line of Laurales emerged after the split of the angiosperms into monocots and dicots. Calycanthus fertilis Walter var. ferax (Michy.) Rehder is a synonym of C. floridus L. var. glaucus (Willd.) Torr. & A. Gray.Data deposition: The sequence reported in this paper has been deposited in the EMBL database (accession no. AJ428413).  相似文献   

20.
He W  Qin Q  Liu S  Li T  Wang J  Xiao J  Xie L  Zhang C  Liu Y 《PloS one》2012,7(6):e38976
Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCC♀, Cyprininae, 2n = 100) × topmouth culter (Erythroculter ilishaeformis Bleeker, TC♂, Cultrinae, 2n = 48) were successfully produced. Diploid hybrids possessed 74 chromosomes with one set from RCC and one set from TC; triploid hybrids harbored 124 chromosomes with two sets from RCC and one set from TC; tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from TC. The 5S rDNA of the three different ploidy-level hybrids and their parents were sequenced and analyzed. There were three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) in RCC and two monomeric 5S rDNA classes (designated class IV: 188 bp, and class V: 286 bp) in TC. In the hybrid offspring, diploid hybrids inherited three 5S rDNA classes from their female parent (RCC) and only class IV from their male parent (TC). Triploid hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent (TC). Tetraploid hybrids gained class II and class III from their female parent (RCC), and generated a new 5S rDNA sequence (designated class I-N). The specific paternal 5S rDNA sequence of class V was not found in the hybrid offspring. Sequence analysis of 5S rDNA revealed the influence of hybridization and polyploidization on the organization and variation of 5S rDNA in fish. This is the first report on the coexistence in vertebrates of viable diploid, triploid and tetraploid hybrids produced by crossing parents with different chromosome numbers, and these new hybrids are novel specimens for studying the genomic variation in the first generation of interspecific hybrids, which has significance for evolution and fish genetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号