首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gynodioecy is a breeding system in which hermaphrodites coexist with male steriles. Theoretical models predict that without any compensation in female fitness male steriles will disappear from a population due to their reproductive disadvantage. In the present study I investigated whether male-sterile (MS), partially male-sterile (IN), and hermaphroditic (H) plants of Plantago lanceolata differed in reproductive growth and allocation. Offspring of three interpopulation crosses segregating all three sex morphs were grown under nitrogen-limited conditions in a growth chamber. Independent of the genetic background MS plants attained a higher vegetative and reproductive dry mass and a higher reproductive output than H plants, whereas IN plants had intermediate values. When corrected for the mass of the pollen, the dry mass differences between the sex morphs were much reduced but still present. However, when whole-plant allocation was expressed on the basis of nitrogen, the differences between the sex morphs disappeared. Thus the sex morphs took up similar amounts of nitrogen but distributed them differently. The MS and IN plants used the nitrogen saved by not producing pollen for additional vegetative as well as reproductive growth. The data presented in this study suggest that resource compensation is one of the main mechanisms responsible for the maintenance of MS and IN plants in gynodioecious P. lanceolata.  相似文献   

2.
Male fertility in Plantago lanceolata is controlled by the interaction of cytoplasmic and nuclear genes. Different cytoplasmic male sterility (CMS) types can be either male sterile or hermaphrodite, depending on the presence of nuclear restorer alleles. In three CMS types of P. lanceolata (CMSI, CMSIIa, and CMSIIb) the number of loci involved in male fertility restoration was determined. In each CMS type, male fertility was restored by multiple genes with either dominant or recessive action and capable either of restoring male fertility independently or in interaction with each other (epistasis). Restorer allele frequencies for CMSI, CMSIIa and CMSIIb were determined by crossing hermaphrodites with ``standard' male steriles. Segregation of male steriles vs. non-male steriles was used to estimate overall restorer allele frequency. The frequency of restorer alleles was different for the CMS types: restorer alleles for CMSI were less frequent than for CMSIIa and CMSIIb. On the basis of the frequencies of male steriles and the CMS types an ``expected' restorer allele frequency could be calculated. The correlation between estimated and expected restorer allele frequency was significant.  相似文献   

3.
Summary Male sterility has been recently discovered in Californian populations of rose clover (Trifolium hirtum). This study describes the frequency distribution of male sterility in Turkish and Californian populations, and compares fitness components of hermaphrodites and females. As male-steriles were found in Turkey, it is likely that they were introduced to California during the 1940's with the original material derived from Turkey. The spread of male-sterile genotypes in California has given rise to an asymmetrical frequency distribution of male sterility with positive skewness. The frequency of females has not exceeded fifty percent and it appears to be temporally stable in most of the Californian populations. The hypothesis that female frequencies and fitness differences between phenotypes are correlated was tested by comparing sex phenotypes in seven populations with contrasting levels of male sterility. The analysis of those populations showed no evidence for such a correlation as no significant differences were found between sex phenotypes for fecundity and seed germination. The hypothesis that females are maintained due to fitness differences in the progeny of hermaphrodites and females was experimentally tested in the population with maximum frequency of male-steriles. The results showed no significant differences in the demographic performance of the progenies of hermaphrodites and females. The present results are discussed in terms of the possible mechanism of maintenance of gynodioecy in rose clover.  相似文献   

4.
Cytoplasmic male sterility (CMS) in plants often results in gynodioecious populations, composed of hermaphrodites and male-sterile females. All models of gynodioecy assume maternal inheritance of the cytoplasmic alleles and postulate a variety of negatively frequency-dependent mechanisms to maintain the cytoplasmic polymorphisms observed in many natural populations. However, in some plant species, mitochondria are transmitted at least occasionally by pollen, a process called paternal leakage. We show that even a small amount of paternal leakage is sufficient to sustain a permanent, stable cytoplasmic polymorphism. Because only hermaphrodites provide pollen in gynodioecious species, the effects of paternal leakage are biased and occur more often from the non-CMS male-fertile haplotype to the CMS male-sterile haplotype. We also show that a nuclear restorer disrupts the polymorphic cytoplasmic equilibrium, leading to fixation of both the CMS allele and the restorer. Although a dominant nuclear restorer fixes, it fixes much more slowly than in the standard CMS models. Although a stable cytonuclear polymorphism is possible with "matching alleles" nuclear restoration, oscillations to low frequencies present a risk of loss by drift. Paternal leakage enhances the stability of joint cytonuclear polymorphism by reducing the chance that a CMS allele is lost by drift.  相似文献   

5.
Variation among individuals in reproductive success is advocated as a major process driving evolution of sexual polymorphisms in plants, such as gynodioecy where females and hermaphrodites coexist. In gynodioecious Beta vulgaris ssp. maritima, sex determination involves cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Both restored CMS and non-CMS hermaphrodites co-occur. Genotype-specific differences in male fitness are theoretically expected to explain the maintenance of cytonuclear polymorphism. Using genotypic information on seedlings and flowering plants within two metapopulations, we investigated whether male fecundity was influenced by ecological, phenotypic and genetic factors, while taking into account the shape and scale of pollen dispersal. Along with spatially restricted pollen flow, we showed that male fecundity was affected by flowering synchrony, investment in reproduction, pollen production and cytoplasmic identity of potential fathers. Siring success of non-CMS hermaphrodites was higher than that of restored CMS hermaphrodites. However, the magnitude of the difference in fecundity depended on the likelihood of carrying restorer alleles for non-CMS hermaphrodites. Our results suggest the occurrence of a cost of silent restorers, a condition supported by scarce empirical evidence, but theoretically required to maintain a stable sexual polymorphism in gynodioecious species.  相似文献   

6.
The selective maintenance of gynodioecy depends on the relative fitness of the male-sterile (female) and hermaphroditic morphs. Females may compensate for their loss of male fitness by reallocating resources from male function (pollen production and pollinator attraction) to female function (seeds and fruits), thus increasing seed production. Females may also benefit from their inability to self-fertilize if selfing and inbreeding depression reduce seed quality in hermaphrodites. We investigated how differences in floral resource allocation (flower size) between female and hermaphroditic plants affect two measures of female reproductive success, pollinator visitation and pollen receipt, in gynodioecious populations of Geranium richardsonii in Colorado. Using emasculation treatments in natural populations, we further examined whether selfing by autogamy and geitonogamy comprises a significant proportion of pollen receipt by hermaphrodites. Flowers of female plants are significantly smaller than those of hermaphrodites. The reduction in allocation to pollinator-attracting structures (petals) is correlated with a significant reduction in pollinator visitation to female flowers in artificial arrays. The reduction in attractiveness is further manifested in significantly less pollen being deposited on the stigmas of female flowers in natural populations. Autogamy is rare in these protandrous flowers, and geitonogamy accounts for most of the difference in pollen receipt between hermaphrodites and females. Female success at receiving pollen was negatively frequency dependent on the relative frequency of females in populations. Thus, two of the prerequisites for the maintenance of females in gynodioecious populations, differences in resource allocation between floral morphs and high selfing rates in hermaphrodites, occur in G. richardsonii.  相似文献   

7.
Microsporogenesis was investigated in hermaphroditic and male-sterile plants in nine gynodioecious taxa of Hawaiian Bidens. Normal microsporogenesis in hermaphrodites and the onset of abortion in male steriles were similar in all taxa and in a hybrid between two gynodioecious species. The early abnormal vacuolation of tapetal cells is the first visible evidence leading to premeiotic abortion of microsporogenesis in male steriles. The sporogenous cells disintegrate rapidly after the vacuolation of the tapetum, resulting in a shrunken, indehiscent anther which is composed of only the epidermal layer with some remnant cells of the endothecium and the connective at anthesis. In hermaphrodites, the tapetal cells remain dense and undergo karyokinesis to become binucleate during meiosis I. The tapetum becomes plasmodial after microspores are released from tetrads and gradually disappears during pollen formation. The genetic factor(s) which cause the abortion act with remarkable precision and consistency in all taxa investigated. This suggests that gynodioecy in all Hawaiian Bidens is homologous and the establishment of male sterility in Hawaiian Bidens occurred only once. The spread of the genetic male-sterile factor(s) may be the result of adaptive radiation of the original gynodioecious species or natural interspecific hybridization.  相似文献   

8.
9.
Polygamy (including trioecy and subdioecy), the co-occurrence of males, hermaphrodites, and females in natural populations, is a rare and poorly studied breeding system expressed in Fraxinus excelsior L. (Oleaceae), a wind-pollinated tree. Here we investigate siring ability of pollen from male vs. hermaphrodite individuals to better understand this sex polymorphism. We conducted single-donor and two-donor pollination experiments and compared both fruit set and seed siring success, assessed with polymorphic microsatellite markers, of male and hermaphrodite individuals. Single pollen donor crosses allowed us to verify the male function of hermaphrodites. However, pollen from hermaphrodites was much less proficient than male pollen, with males siring 10 times as many fruits in single donor pollination treatments. This result was strengthened by the surprisingly low reproductive success of hermaphrodites in pollen competition conditions: of the 110 seedlings analyzed three were selfed and only one was sired by the hermaphrodite donor. The remaining 106 were sired by the male pollen donor. These results raise the question of the maintenance of male fertility in hermaphrodites in Fraxinus excelsior. Male function of hermaphrodites in this species now needs to be assessed under field conditions.  相似文献   

10.
Male reproductive output, pollen in plants and sperm in animals has been shown to constitute a substantial cost for many organisms. In parthenogenetic hermaphrodites, selection is therefore expected to reduce the allocation of resources to male reproductive output. However, sustained production of pollen or sperm has been observed in numerous asexual hermaphrodites. We studied the widespread production of pollen by triploid asexual dandelions, Taraxacum sect. Ruderalia, comparing rare male sterile individuals with pollen producing asexuals. We found that individuals can show plasticity in the production of pollen, but that it is nevertheless possible to distinguish between (facultatively) male sterile asexuals and male fertile asexuals. Based on evidence from genetic markers and crosses, we conclude that the male sterility in asexual dandelions is caused by nuclear genes, in contrast to the cytoplasmically inherited male sterility previously found in sexual dandelions. Male sterile lineages did not produce more seeds per flower head, heavier seeds or seeds that were more viable. However, male sterile plants did produce more seed heads and hence more seeds than pollen producing ones, indicating that they were able to reallocate resources toward seed production. Considering the difference in seed production, it remains puzzling that not more asexual dandelions are male sterile.  相似文献   

11.
A natural male-sterile mutant was found in the population of a short-duration pigeonpea (Cajanus cajan[L.] Millsp.) cultivar ICPL 85010. This mutant is characterized by light yellow anthers of reduced size that are devoid of pollen grains. This mutant was crossed with two pigeonpea cultivars to study its inheritance. The F1, F2, and test cross data of the two crosses suggested that this male sterility trait is genetic in origin and is controlled by a single recessivegene. The F1 (mutant x ICPL 85010) plants were crossed with translucent (ms1) and arrowhead type (ms2) genetic male steriles reported earlier to study their allelic relationships. Segregation in the three-way cross F1 and F2 populations revealed that the mutant male-sterile gene was nonallelic to ms1 and ms2 loci and it is designated ms3. The new male sterility sources in pigeonpea will help in producing high-yielding hybrids and populations in diverse phenological groups.  相似文献   

12.
Plant mating systems are known to influence population genetic structure because pollen and seed dispersal are often spatially restricted. However, the reciprocal outcomes of population structure on the dynamics of polymorphic mating systems have received little attention. In gynodioecious sea beet (Beta vulgaris ssp. maritima), three sexual types co‐occur: females carrying a cytoplasmic male sterility (CMS) gene, hermaphrodites carrying a non‐CMS cytoplasm and restored hermaphrodites that carry CMS genes and nuclear restorer alleles. This study investigated the effects of fine‐scale genetic structure on male reproductive success of the two hermaphroditic forms. Our study population was strongly structured and characterized by contrasting local sex‐ratios. Pollen flow was constrained over short distances and depended on local plant density. Interestingly, restored hermaphrodites sired significantly more seedlings than non‐CMS hermaphrodites, despite the previous observation that the former produce pollen of lower quality than the latter. This result was explained by the higher frequency of females in the local vicinity of restored (CMS) hermaphrodites as compared to non‐CMS hermaphrodites. Population structure thus strongly influences individual fitness and may locally counteract the expected effects of selection, suggesting that understanding fine scale population processes is central to predicting the evolution of gender polymorphism in angiosperms.  相似文献   

13.
Gynodioecy, the coexistence of hermaphrodites and male steriles, is frequent in populations of Plantago lanceolata L. A condition for the maintenance of gynodioecy in an obligatory outbreeding species like this is an increase in female fitness in male steriles compared with hermaphrodites. One of the possible underlying mechanisms, a lower cyanide-resistant respiration in male steriles, which could lead to a higher metabolic efficiency, was investigated. For the experiments adult plants were used, because the effects which compensate for male sterility have been found in characters like seed production and longevity. No general correlation between sex phenotype and cyanide-resistant respiration capacity, or with any other respiration component, was found. Only in a single cross a strong correlation between cyanide-resistant respiration activity and sex phenotype was established, male steriles possessing the higher activity. The conclusion from these experiments is that there is no pleiotropic relationship between respiration levels and sex phenotype. The strongly significant correlation mentioned is ascribed to chromosomal linkage.  相似文献   

14.
The evolution of male-sterile individuals in hermaphroditic species represents the first step in the evolution of sex specialization. For male-sterile individuals to persist they must have some fitness advantage that compensates for their loss of the male function. Female fecundity also depends on environmental factors as those determining the likelihood of pollination and fertilization. Here we assessed the effects of both male sterility and reproductive synchrony (an environmentally affected trait) on the magnitude of female compensation of Erythroxylum havanense, a distylous shrub with morph-biased male sterility. In vitro measurements of pollen germination showed that thrums were more male sterile than pins. The compensatory advantage of thrums changed by a factor of five depending on flowering synchrony. Flowering in synchrony with the population increased fruit production in both morphs. However, because pins that flowered out of synchrony produced almost no fruits, the reproductive compensation of thrums was higher in these circumstances. Because the magnitude of compensation is frequently considered as a key factor in the evolution of sex specialization, the environmentally induced variation in the magnitude of the reproductive compensation of thrum plants may have profound effects on the evolutionary dynamics of the reproductive system of E. havanense.  相似文献   

15.
Populations of three North American species of Lycium (Solanaceae) are morphologically gynodioecious and consist of male-sterile (i.e., female) and hermaphroditic plants. Marked individuals were consistent in sexual expression across years and male sterility was present throughout much of the species' ranges. Controlled pollinations reveal that L. californicum, L. exsertum, and L. fremontii are functionally dioecious. Fruit production in females ranged from 36 to 63%, whereas hermaphrodites functioned essentially as males. Though hermaphrodites were mostly male, investigation of pollen tube growth reveals that hermaphrodites of all dimorphic species were self-compatible. Self-fertilization and consequent inbreeding depression are commonly invoked as important selective forces promoting the invasion of male-sterile mutants into cosexual populations. A corollary prediction of these models is that gender dimorphism evolves from self-compatible ancestors. However, fruit production, seed production, and pollen tube number following outcross pollination were significantly higher than following self-pollination for three diploid, cosexual species that are closely related to the dimorphic species. The data presented here on incompatibility systems are consistent with the hypothesis that polyploidy disrupted the self-incompatibility system in the gynodioecious species leading to the evolution of gender dimorphism.  相似文献   

16.
In Thymus vulgaris L., sex determination involves both the nuclear and the cytoplasmic genomes: the cytoplasm is responsible for male-sterility (the female phenotype) while specific nuclear genes may restore male fertility (the hermaphrodite phenotype). Previous observations have shown high variation among hermaphrodites for pollen and seed production. In order to investigate the origin of this variation, 12 female plants, four from each of three populations, were hand-pollinated with pollen from hermaphrodites from three different paternal populations. The sex-ratio (i.e. the frequency of hermaphrodites) produced and the reproductive functions of these offspring were measured. A strong positive correlation was observed between the sex-ratio within a family and both female and male reproductive functions of its hermaphrodites. No such correlation was found for females. This result suggests that restorer genes may be directly or indirectly involved both in sex determination and in the efficiency of resource allocation to reproductive functions. As a consequence, female advantage, i.e. the relative fecundity of females to hermaphrodites, is larger in families with low sex-ratio, and this might affect the evolution of this gynodioecious breeding system.  相似文献   

17.
Multilocus outcrossing rates were estimated in natural and experimental populations of Salvia pratensis, an entomophilous, gynodioecious, protandrous perennial. Male steriles were used to check the estimation procedure of outcrossing rates in hermaphrodites. Estimates of outcrossing rates in hermaphroditic plants ranged from 38.2% to 81.8% in natural populations and from 71.5% to 95.5% in experimental populations. No correlations were found between outcrossing rates and population size. However, outcrossing in hermaphrodites was promoted by high plant densities and low frequencies of male steriles. It is argued that effective management to preserve genetic variation in populations of S. pratensis should provide for the maintenance of high plant densities.  相似文献   

18.
Mathematical models predict that to maintain androdioecious populations, males must have at least twice the fitness of male function in hermaphrodites. To understand how androdioecy is maintained in Laguncularia racemosa (white mangrove), outcrossing, inbreeding depression, and relative male fitness were estimated in two androdioecious populations and one hermaphroditic population. Outcrossing was estimated based on length of pollinator foraging bout and pollen carryover assumptions. Inbreeding depression was measured at three life stages: fruit set, seedling emergence, and seedling survivorship. The relative fitnesses of males and the male component of hermaphrodites were compared at these three stages and at the pollen production stage. Male frequency predictions generated by Lloyd's model were compared with observed frequencies in two androdioecious subpopulations. Outcrossing estimates were moderate for all populations (0.29-0.66). Inbreeding depression varied among populations (-0.03-0.86), but the strength of inbreeding depression did not increase with male frequency. Males produced significantly more flowers/inflorescence than hermaphrodites, but pollen production/flower did not differ. Male and hermaphroditic progeny did not differ significantly at other life stages. Populations of white mangrove with male plants were functionally androdioecious. Lloyd's model accurately predicted male frequency in one androdioecious subpopulation, but underestimated male frequency in the second subpopulation.  相似文献   

19.
A new cytoplasmic male sterility (CMS) source in Brassica juncea (2n = 36; AABB) was developed by substituting its nucleus into the cytoplasm of Enarthrocarpus lyratus (2n = 20; E(l)E(l)). Male sterility was complete, stable and manifested in either petaloid- or rudimentary-anthers which were devoid of fertile pollen grains. Male sterile plants resembled the euplasmic B. juncea except for slight leaf yellowing and delayed maturity. Leaf yellowing was due mainly to higher level of carotenoids rather than a reduction in chlorophyll pigments. Female fertility in male-sterile plants varied; it was normal in lines having rudimentary anthers but poor in those with petaloid anthers. Each of the 62 evaluated germplasm lines of B. juncea was a functional maintainer of male sterility. The gene(s) for male-fertility restoration ( Rf) were introgressed from the cytoplasm donor species through homoeologous pairing between A and E(l) chromosomes in monosomic addition plants (2n = 18II+1E(l)). The percent pollen fertility of restored F(1) ( lyr CMS x putative restorer) plants ranged from 60 to 80%. This, however, was sufficient to ensure complete seed set upon by bag selfing. The CMS ( lyr) B. juncea compared favourably with the existing CMS systems for various productivity related characteristics. However, the reduced transmission frequency of the Rf gene(s) through pollen grains, which was evident from the sporadic occurrence of male-sterile plants in restored F(1) hybrids, remains a limitation.  相似文献   

20.
Models of the evolution of gynodioecy assume that inbreeding affects male and female fertility equally and ignore quantitative variation in sex expression. The objectives of this study were to assess inbreeding effects, genetic background, and plant maturity on male and female fertility and the mechanism of male sterility inheritance for Nemophila menziesii (Hydrophyllaceae). Frequency of male-sterile flowers, number of anthers and ovules, and percentage of viable pollen were measured on plants from different pedigrees and five inbreeding levels (F = 0, 0.0625, 0.25, 0.5, and 0.75). Quantitative variation in male sterility was evident. As inbreeding increased, anther and ovule number decreased; the effect on anther number was greater than on ovule number. Pedigrees varied in number of male-sterile flowers and inbreeding effects. Frequency of male-sterile flowers was greatest among first flowers. No trade-off between male and female fertility was detected. A model attributing male sterility to a cytoplasmic locus and restoration to male fertility to a nuclear locus accounted for the distribution of complete sterility and hermaphroditism over the pedigrees. This study suggests that models of the evolution and maintenance of gynodioecy should allow for quantitative variation in male and female fertility components due to inbreeding, pedigree, and plant maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号