首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is hard to construct theories for the folding of globular proteins because they are large and complicated molecules having enormous numbers of nonnative conformations and having native states that are complicated to describe. Statistical mechanical theories of protein folding are constructed around major simplifying assumptions about the energy as a function of conformation and/or simplifications of the representation of the polypeptide chain, such as one point per residue on a cubic lattice. It is not clear how the results of these theories are affected by their various simplifications. Here we take a very different simplification approach where the chain is accurately represented and the energy of each conformation is calculated by a not unreasonable empirical function. However, the set of amino acid sequences and allowed conformations is so restricted that it becomes computationally feasible to examine them all. Hence we are able to calculate melting curves for thermal denaturation as well as the detailed kinetic pathway of refolding. Such calculations are based on a novel representation of the conformations as points in an abstract 12-dimensional Euclidean conformation space. Fast folding sequences have relatively high melting temperatures, native structures with relatively low energies, small kinetic barriers between local minima, and relatively many conformations in the global energy minimum's watershed. In contrast to other folding theories, these models show no necessary relationship between fast folding and an overall funnel shape to the energy surface, or a large energy gap between the native and the lowest nonnative structure, or the depth of the native energy minimum compared to the roughness of the energy landscape. Proteins 32:425–437, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Sewage sludge is the solid, organic material remaining after wastewater is treated and discharged from a wastewater treatment plant. Sludge is treated to stabilize the organic matter and reduce the amount of human pathogens. Once government regulations are met, including material quality standards (e.g., E. coli levels and heavy metal content) sludge is termed “biosolids”, which may be disposed of by land application according to regulations. Live-culture techniques have traditionally been used to enumerate select pathogens and/or indicator organisms to demonstrate compliance with regulatory requirements. However, these methods may result in underestimates of viable microorganisms due to several problems, including their inability to detect viable but non-culturable (VBNC) cells. Real-time quantitative polymerase chain reaction (qPCR) is currently under investigation as a fast, sensitive, and specific molecular tool for enumeration of pathogens in biosolids. Its main limitation is that it amplifies all target DNAs, including that from non-viable cells. This can be overcome by coupling qPCR with propidium monoazide (PMA), a microbial membrane-impermeant dye that binds to extracellular DNA and DNA in dead or membrane-compromised cells, inhibiting its amplification. PMA has successfully been used to monitor the presence of viable pathogens in several different matrices. In this review the use of PMA–qPCR is discussed as a suitable approach for viable microbial enumeration in biosolids. Recommendations for optimization of the method are made, with a focus on DNA extraction, dilution of sample turbidity, reagent concentration, and light exposure time.  相似文献   

3.
Sewage sludge is the solid, organic material remaining after wastewater is treated and discharged from a wastewater treatment plant. Sludge is treated to stabilize the organic matter and reduce the amount of human pathogens. Once government regulations are met, including material quality standards (e.g., E. coli levels and heavy metal content) sludge is termed “biosolids”, which may be disposed of by land application according to regulations. Live-culture techniques have traditionally been used to enumerate select pathogens and/or indicator organisms to demonstrate compliance with regulatory requirements. However, these methods may result in underestimates of viable microorganisms due to several problems, including their inability to detect viable but non-culturable (VBNC) cells. Real-time quantitative polymerase chain reaction (qPCR) is currently under investigation as a fast, sensitive, and specific molecular tool for enumeration of pathogens in biosolids. Its main limitation is that it amplifies all target DNAs, including that from non-viable cells. This can be overcome by coupling qPCR with propidium monoazide (PMA), a microbial membrane-impermeant dye that binds to extracellular DNA and DNA in dead or membrane-compromised cells, inhibiting its amplification. PMA has successfully been used to monitor the presence of viable pathogens in several different matrices. In this review the use of PMA-qPCR is discussed as a suitable approach for viable microbial enumeration in biosolids. Recommendations for optimization of the method are made, with a focus on DNA extraction, dilution of sample turbidity, reagent concentration, and light exposure time.  相似文献   

4.
Wang K 《Human heredity》2003,55(1):1-15
The use of correlated phenotypes may dramatically increase the power to detect the underlying quantitative trait loci (QTLs). Current approaches for multiple phenotypes include regression-based methods, the multivariate variance of components method, factor analysis and structural equations. Issues with these methods include: 1) They are computation intensive and are subject to problems of optimization algorithms; 2) Existing claims on the asymptotic distribution of the likelihood ratio statistic for the multivariate variance of components method are contradictory and erroneous; 3) The dimension reduction of the parameter space under the null hypothesis, a phenomenon that is unique to multivariate analyses, makes the asymptotic distribution of the likelihood ratio statistic more complicated than expected. In this article, three cases of varying complexity are considered. For each case, the efficient score statistic, which is asympotically equivalent to the likelihood ratio statistic, is derived, so is its asymptotic distribution [correction]. These methods are straightforward to calculate. Finite-sample properties of these score statistics are studied through extensive simulations. These score statistics are for use with general pedigrees.  相似文献   

5.
6.
Eunsung Park  Julian Lee 《Proteins》2015,83(6):1054-1067
Many proteins undergo large‐scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non‐overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter‐domain bending motion. The performance of the algorithm is demonstrated on several proteins. Proteins 2015; 83:1054–1067. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Direct enumeration of Escherichia coli from oysters was achieved using a polymerase chain reaction (PCR) amplification of the lamB gene coupled with an enzyme-linked immunosorbent assay (ELISA). Amplified PCR products generated using a digoxigenin-labelled primer were heat denatured before being quantified by an ELISA. A biotinylated probe immobilized onto streptavidin-coated microplates was used to capture the digoxigenin-labelled fragments that were detected with a peroxidase antidigoxigenin conjugate. Subsequent enzymic conversion of substrate gave distinct absorbance differences when assaying oyster samples containing E. coli in the range 10-10(5) cfu g-1.  相似文献   

8.
The discovery of higher-order epistatic interactions is an important task in the field of genome wide association studies which allows for the identification of complex interaction patterns between multiple genetic markers. Some existing bruteforce approaches explore the whole space of k-interactions in an exhaustive manner resulting in almost intractable execution times. Computational cost can be reduced drastically by restricting the search space with suitable preprocessing filters which prune unpromising candidates. Other approaches mitigate the execution time by employing massively parallel accelerators in order to benefit from the vast computational resources of these architectures. In this paper, we combine a novel preprocessing filter, namely SingleMI, with massively parallel computation on modern GPUs to further accelerate epistasis discovery. Our implementation improves both the runtime and accuracy when compared to a previous GPU counterpart that employs mutual information clustering for prefiltering. SingleMI is open source software and publicly available at: https://github.com/sleeepyjack/singlemi/.  相似文献   

9.
Aims:  To design a rapid specific method for enumeration of viable Listeria spp. using the fluorescence in situ hybridization with filter cultivation (FISHFC) method.
Methods and Results:  The probe, Lis-1400, was designed from the 23S rRNA region of the Listeria genome, and labelled with 5'-carboxy-tetramethyl-rhodamine- N - hydroxy-succinimide-ester. Fluorescence was observed for all Listeria species but not for any organisms from the other genera, suggesting Lis-1400 is highly specific for Listeria spp. For purposes of filter cultivation prior to hybridization, hydrophilic polypropylene membrane filters gave better contrast between fluorescing colonies and background fluorescence. This was because of a high S/N ratio (fluorescence intensity of each microcolony/fluorescence intensity of background noise) after FISH treatment. Results were achievable in 14 h using Lis-1400-aided FISHFC as compared with 4–7 days required for confirmation of Listeria spp. by conventional plate count methods. Moreover, viable Listeria counts in selected food samples showed no significant differences between Lis-1400-aided FISHFC and conventional methods.
Conclusions:  The Lis-1400-aided FISHFC method is more efficient than conventional methods for enumeration of viable Listeria spp. in food samples.
Significance and Impact of the Study:  For enumeration of Listeria spp., Lis-1400-aided FISHFC method is equally accurate yet faster than conventional plate count methods, and can be valuable in the control of listeriosis.  相似文献   

10.
With technological advances in genetic mapping studies more of the genes and polymorphisms that underlie Quantitative Trait Loci (QTL) are now being identified. As the identities of these genes become known there is a growing need for an analysis framework that incorporates the molecular interactions affected by natural polymorphisms. As a step towards such a framework we present a molecular model of genetic variation in sporulation efficiency between natural isolates of the yeast, Saccharomyces cerevisiae. The model is based on the structure of the regulatory pathway that controls sporulation. The model captures the phenotypic variation between strains carrying different combinations of alleles at known QTL. Compared to a standard linear model the molecular model requires fewer free parameters, and has the advantage of generating quantitative hypotheses about the affinity of specific molecular interactions in different genetic backgrounds. Our analyses provide a concrete example of how the thermodynamic properties of protein-protein and protein-DNA interactions naturally give rise to epistasis, the non-linear relationship between genotype and phenotype. As more causative genes and polymorphisms underlying QTL are identified, thermodynamic analyses of quantitative traits may provide a useful framework for unraveling the complex relationship between genotype and phenotype.  相似文献   

11.
A novel quantitative PCR (QPCR) approach, which combines competitive PCR with constant-denaturant capillary electrophoresis (CDCE), was adapted for enumerating microbial cells in environmental samples using the marine nanoflagellate Cafeteria roenbergensis as a model organism. Competitive PCR has been used successfully for quantification of DNA in environmental samples. However, this technique is labor intensive, and its accuracy is dependent on an internal competitor, which must possess the same amplification efficiency as the target yet can be easily discriminated from the target DNA. The use of CDCE circumvented these problems, as its high resolution permitted the use of an internal competitor which differed from the target DNA fragment by a single base and thus ensured that both sequences could be amplified with equal efficiency. The sensitivity of CDCE also enabled specific and precise detection of sequences over a broad range of concentrations. The combined competitive QPCR and CDCE approach accurately enumerated C. roenbergensis cells in eutrophic, coastal seawater at abundances ranging from approximately 10 to 10(4) cells x ml(-1). The QPCR cell estimates were confirmed by fluorescent in situ hybridization counts, but estimates of samples with <50 cells x ml(-1) by QPCR were less variable. This novel approach extends the usefulness of competitive QPCR by demonstrating its ability to reliably enumerate microorganisms at a range of environmentally relevant cell concentrations in complex aquatic samples.  相似文献   

12.
13.
Four methods were compared for detecting heat-labile toxin production by Escherichia coli: DNA colony hybridization, two enzyme-linked immunosorbent assays, and the mouse Y-1 adrenal cell reaction. Although results of the methods were in general agreement, there were some differences in specificity and sensitivity. DNA colony hybridization was used to detect and enumerate enterotoxigenic E. coli isolates in artificially contaminated food without enrichment. Sensitivity level was 100 cells per g.  相似文献   

14.
A new fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes and an array scanner for rapid detection, identification, and enumeration of Escherichia coli is described. The test utilizes Cy3-labeled peptide nucleic acid (PNA) probes complementary to a specific 16S rRNA sequence of E. coli. Samples were filtered and incubated for 5 h, the membrane filters were then analyzed by fluorescence in situ hybridization and results were visualized with an array scanner. Results were provided as fluorescent spots representing E. coli microcolonies on the membrane filter surface. The number of fluorescent spots correlated to standard colony counts up to 100 colony-forming units per membrane filter. Above this level, better accuracy was obtained with PNA FISH due to the ability of the scanner to resolve neighboring microcolonies, which were not distinguishable as individual colonies once they were visible by eye.  相似文献   

15.
Four methods were compared for detecting heat-labile toxin production by Escherichia coli: DNA colony hybridization, two enzyme-linked immunosorbent assays, and the mouse Y-1 adrenal cell reaction. Although results of the methods were in general agreement, there were some differences in specificity and sensitivity. DNA colony hybridization was used to detect and enumerate enterotoxigenic E. coli isolates in artificially contaminated food without enrichment. Sensitivity level was 100 cells per g.  相似文献   

16.
A new method for the rapid and accurate detection of pathogenic Naegleria fowleri amoebae in surface environmental water was developed. The method is based on an immunofluorescent assay combined with detection by solid-phase cytometry. In this study we developed and compared two protocols using different reporter systems conjugated to antibodies. The monoclonal antibody Ac5D12 was conjugated with biotin and horseradish peroxidase, and the presence of cells was revealed with streptavidin conjugated to both R-phycoerythrin and cyanine Cy5 (RPE-Cy5) and tyramide-fluorescein isothiocyanate, respectively. The RPE-Cy5 protocol was the most efficient protocol and allowed the detection of both trophozoite and cyst forms in water. The direct counts obtained by this new method were not significantly different from those obtained by the traditional culture approach, and results were provided within 3 h. The sensitivity of the quantitative method is 200 cells per liter. The limit is due only to the filtration capacity of the membrane used.  相似文献   

17.
Nucleic acid-based assays were developed to enumerate members of the three taxa Lactococcus lactis subsp. cremoris, L. lactis subsp. lactis, and Leuconostoc spp. in mesophilic starter cultures. To our knowledge the present is the first study to present a multiplex quantitative PCR (qPCR) strategy for the relative enumeration of bacteria. The multiplex qPCR strategy was designed to quantify the target DNA simultaneously relative to total bacterial DNA. The assay has a high discriminatory power and resolves concentration changes as low as 1.3-fold. The methodology was compared with flow cytometric fluorescence in situ hybridization (FLOW-FISH) and 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside (X-Gal)-calcium citrate agar-based plate counting. For enumeration by FLOW-FISH, three new probes having the same specificity as the qPCR assay were designed and established. A combination with flow cytometry greatly reduced the time consumed compared to manual enumeration. Both qPCR and FLOW-FISH yielded similar community compositions for 10 complex starter cultures, with all detected subpopulations being highly significantly correlated (P < 0.001). Correlations between X-Gal-calcium citrate agar-based CFU and qPCR-derived counts were highly significant (P < 0.01 and P < 0.001, respectively) for the number of acidifiers versus L. lactis subsp. cremoris and for Leuconostoc spp. as quantified by the two techniques, respectively. This confirmed that most acidifiers in the studied PROBAT cultures are members of L. lactis subsp. cremoris. Quantitative real-time PCR and FLOW-FISH were found to be effective and accurate tools for the bacterial community analysis of complex starter cultures.  相似文献   

18.
Enright AJ  Ouzounis CA 《Genome biology》2001,2(9):research0034.1-research00347

Background  

It has recently been shown that the detection of gene fusion events across genomes can be used for predicting functional associations of proteins, including physical interaction or complex formation. To obtain such predictions we have made an exhaustive search for gene fusion events within 24 available completely sequenced genomes.  相似文献   

19.
Antisense technology has been widely used to regulate gene expression. A tetracycline (tet)-regulated antisense-RNA-expressing system has been developed and used to downregulate chromosomally derived genes expressed in Staphylococcus aureus. This downregulation subsequently provides an evaluation of the virulence factor and drug targets. The regulated antisense RNA library allows for genome-wide analyses of the functions of staphylococcal gene products for growth in culture and survival during infection. Moreover, this antisense RNA technology may provide a key tool to identify mechanisms of novel antibacterial compound action.  相似文献   

20.
A new method for the rapid and sensitive detection of Legionella pneumophila in hot water systems has been developed. The method is based on an IF assay combined with detection by solid-phase cytometry. This method allowed the enumeration of L. pneumophila serogroup 1 and L. pneumophila serogroups 2 to 6, 8 to 10, and 12 to 15 in tap water samples within 3 to 4 h. The sensitivity of the method was between 10 and 100 bacteria per liter and was principally limited by the filtration capacity of membranes. The specificity of the antibody was evaluated against 15 non-Legionella strains, and no cross-reactivity was observed. When the method was applied to natural waters, direct counts of L. pneumophila were compared with the number of CFU obtained by the standard culture method. Direct counts were always higher than culturable counts, and the ratio between the two methods ranged from 1.4 to 325. Solid-phase cytometry offers a fast and sensitive alternative to the culture method for L. pneumophila screening in hot water systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号