首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type IB topoisomerases cleave and rejoin DNA through a DNA-(3'-phosphotyrosyl)-enzyme intermediate. A constellation of conserved amino acids (Arg-130, Lys-167, Arg-223, and His-265 in vaccinia topoisomerase) catalyzes the attack of the tyrosine nucleophile (Tyr-274) at the scissile phosphodiester. Previous studies implicated Arg-223 and His-265 in transition state stabilization and Lys-167 in proton donation to the 5'-O of the leaving DNA strand. Here we find that Arg-130 also plays a major role in leaving group expulsion. The rate of DNA cleavage by vaccinia topoisomerase mutant R130K, which was slower than wild-type topoisomerase by a factor of 10(-4.3), was stimulated 2600-fold by a 5'-bridging phosphorothiolate at the cleavage site. The catalytic defect of the R130A mutant was also rescued by the 5'-S modification (190-fold stimulation), albeit to a lesser degree than R130K. We surmise that Arg-130 plays dual roles in transition state stabilization and general acid catalysis. Whereas the R130A mutation abolishes both functions, R130K permits the transition state stabilization function (via contact of lysine with the scissile phosphate) but not the proton transfer function. Our results show that the process of general acid catalysis is complex and suggest that Lys-167 and Arg-130 comprise a proton relay from the topoisomerase to the 5'-O of the leaving DNA strand.  相似文献   

2.
Krogh BO  Shuman S 《Molecular cell》2000,5(6):1035-1041
Type IB topoisomerases and tyrosine recombinases are structurally homologous strand transferases that act through DNA-(3'-phosphotyrosyl)-enzyme intermediates. A constellation of conserved amino acids (Arg-130, Lys-167, Arg-223, and His-265 in vaccinia topoisomerase) catalyzes transesterification of tyrosine to the scissile phosphodiester. We used 5'-bridging phosphorothiolate-modified DNAs to implicate Lys-167 as a general acid catalyst. The lower pKa of the 5'-S leaving group versus 5'-O restored activity to the K167A mutant, whereas there was no positive thio effect for mutants R223A and H265A. The lysine is located atop a flexible hairpin loop, and it shifts into the minor groove upon DNA binding. Coupling of conformational changes in a general acid loop to covalent catalysis of phosphoryl transfer is one of several mechanistic features shared by the topoisomerase/recombinase and protein phosphatase superfamilies.  相似文献   

3.
Four conserved amino acids of type IB topoisomerases (Arg130, Lys167, Arg223, and His265 in vaccinia topoisomerase) catalyze the attack by tyrosine on the scissile phosphodiester to form a DNA-(3'-phosphotyrosyl)-enzyme intermediate. The mechanism entails general acid catalysis (by Lys167 and Arg130) and transition-state stabilization (via contact of His265 with the pro-Sp oxygen). Here we query the function of Arg223, which accelerates transesterification by a factor of 10(5). The requirement for Arg223 is alleviated by a neutral Sp methylphosphonate (MeP) linkage at the cleavage site. Arg223 is not required for the 30,000-fold activation of the latent endonuclease activity of topoisomerase by the Sp MeP. The rate of autohydrolysis by the DNA-(3'-MeP)-topoisomerase intermediate approaches 10% of the rate of religation to a 5'-OH DNA strand. These findings underscore the importance of transition-state electrostatics in determining the composition of the active site and dictating the balance between strand transferase and hydrolase functions.  相似文献   

4.
T4 RNA ligase 1 (Rnl1) exemplifies an ATP-dependent RNA ligase family that includes fungal tRNA ligase (Trl1) and a putative baculovirus RNA ligase. Rnl1 acts via a covalent enzyme-AMP intermediate generated by attack of Lys-99 N zeta on the alpha phosphorus of ATP. Mutation of Lys-99 abolishes ligase activity. Here we tested the effects of alanine mutations at 19 conserved positions in Rnl1 and thereby identified 9 new residues essential for ligase activity: Arg-54, Lys-75, Phe-77, Gly-102, Lys-119, Glu-227, Gly-228, Lys-240, and Lys-242. Seven of the essential residues are located within counterparts of conserved nucleotidyltransferase motifs I (99KEDG102), Ia (118SK119), IV (227EGYVA231), and V (238HFKIK242) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligase 2. Three other essential residues, Arg-54, Lys-75 and Phe-77, are located upstream of the AMP attachment site within a conserved domain unique to the Rnl1-like ligase family. We infer a shared evolutionary history and active site architecture in Rnl1 (a tRNA repair enzyme) and Trl1 (a tRNA splicing enzyme). We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of Rnl1 adenylylation (step 1) and phosphodiester bond formation (step 3). Lys-75, Lys-240, and Lys-242 were found to be essential for step 1 and overall ligation of 5'-phosphorylated RNA but not for phosphodiester bond formation. These results suggest that the composition of the Rnl1 active site is different during steps 1 and 3. Mutations at Arg-54 and Lys-119 abolished the overall RNA ligation reaction without affecting steps 1 and 3. Arg-54 and Lys-119 are thereby implicated as specific catalysts of the RNA adenylation reaction (step 2) of the ligation pathway.  相似文献   

5.
Directed mutagenesis of the beta-subunit of F1-ATPase from Escherichia coli   总被引:7,自引:0,他引:7  
Oligonucleotide-directed mutagenesis was used to generate six mutant strains of Escherichia coli which had the following specific amino acid substitutions in the beta-subunit of F1-ATPase: (i) Lys-155----Gln; (ii) Lys-155----Glu; (iii) Gly-149----Ile; (iv) Gly-154----Ile; (v) Tyr-297----Phe;(vi) Tyr-354----Phe. The effects of each mutation on growth of cells on succinate plates or limiting (3 mM) glucose and on cell membrane ATPase activity and ATP-driven pH gradient formation were studied. The results showed Lys-155 to be essential for catalysis, as has been predicted previously from sequence homology and structural considerations; however, the results appear to contradict the hypothesis that Lys-155 interacts with one of the substrate phosphate groups because the Lys-155----Glu mutation was less detrimental than Lys-155----Gln. Gly-149 and Gly-154 have been predicted to be involved in essential conformational changes in F1-ATPase by virtue of their position in a putative glycine-rich flexible loop structure. The mutation of Gly-154----Ile caused strong impairment of catalysis, but the Gly-149----Ile mutation produced only moderate impairment. The two tyrosine residues chosen for mutation were residues which have previously received much attention due to their being the sites of reaction of the inactivating chemical modification reagents 4-chloro-7-nitrobenzofurazan (Tyr-297) and p-fluorosulfonylbenzoyl-5'-adenosine (Tyr-354). We found that mutation of Tyr-297----Phe caused only minor impairment of catalysis, and mutation of Tyr-354----Phe produced no impairment. Therefore, a direct role for either of these tyrosine residues in catalysis is unlikely.  相似文献   

6.
Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-A crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) beta-sheet domain (amino acids 1-90) and a predominantly alpha-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an "open" conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.  相似文献   

7.
Various in vitro mutated human cytochrome c genes which encode displaced amino acid residues at the 14th, 17th, 28th, 37th, 38th, 56th, and/or 84th residues were constructed, and their degrees of complementation of yeast CYC1 deficiency were examined. Invariant Cys-17 and Arg-38 could not be replaced by alanine and tryptophan, respectively, without function impairment. Cytochrome c containing Ala-14 instead of conserved Cys-14, Gly-38 or Lys-38 instead of Arg-38, and Ser-84 instead of invariant Gly-84 were partly functional. These results indicate that these invariant or conserved residues are important. Cytochromes c containing Cys-56 instead of native Gly-56 was partly functional. Cytochrome c containing Arg-37 and Gly-38 instead of Gly-37 and Arg-38 was slightly functional. Replacement of variable Thr-28 and Gly-37 by Ile-28 and Arg-37, respectively, produced no effects. Our results are as a whole consistent with the view that conserved residues are important and variable residues are less important for cytochrome c to function.  相似文献   

8.
Topoisomerase IB controls DNA topology by cleaving DNA transiently. This property is used by inhibitors, such as camptothecin, that stabilize, by inhibiting the religation step, the cleavage complex, in which the enzyme is covalently attached to the 3'-phosphate of the cleaved DNA strand. These drugs are used in clinics as antitumor agents. Because three-dimensional structural studies have shown that camptothecin derivatives act as base pair mimics and intercalate between two base pairs in the ternary DNA-topoisomerase-inhibitor complex, we hypothesized that base pairs mimics could act like campthotecin and inhibit the religation reaction after the formation of the topoisomerase I-DNA cleavage complex. We show here that three base pair mimics, nucleobases analogues of the aminophenyl-thiazole family, once targeted specifically to a DNA sequence were potent topoisomerase IB inhibitors. The targeting was achieved through covalent linkage to a sequence-specific DNA ligand, a triplex-forming oligonucleotide, and was necessary to position and keep the nucleobase analogue in the cleavage complex. In the absence of triplex formation, only a weak binding to the DNA and topoisomerase I-mediated DNA cleavage was observed. The three compounds were equally active once conjugated, implying that the intercalation of the nucleobase upon triplex formation is the essential feature for the inhibition activity.  相似文献   

9.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

10.
Crystal structures of complexes between type IA DNA topoisomerases and single-stranded DNA suggest that the residues Ser-192, Arg-195, and Gln-197 in a conserved region of Escherichia coli topoisomerase I may be important for direct interactions with phosphates on the G strand of DNA, which is the substrate for DNA cleavage and religation (Changela A., DiGate, R. J., and Mondragón, A. (2001) Nature 411, 1077-1081; Perry, K., and Mondragón, A. (2003) Structure 11, 1349-1358). Site-directed mutagenesis experiments altering these residues to alanines and other amino acids were carried out to probe the relevance of these interactions in the catalytic activities of the enzyme. The results show that the side chains of Arg-195 and Gln-197 are required for DNA cleavage by the enzyme and are likely to be important for positioning of the G strand of DNA at the active site prior to DNA cleavage. Mutation of Ser-192 did not affect DNA binding and cleavage but nevertheless decreased the overall rate of relaxation of supercoiled DNA probably because of its participation in a later step of the reaction pathway.  相似文献   

11.
The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) possesses tyrosine-specific protein kinase activity and autophosphorylates at Tyr-1073. Within the kinase domain of P130gag-fps is a putative ATP-binding site containing a lysine (Lys-950) homologous to lysine residues in cAMP-dependent protein kinase and p60v-src which bind the ATP analogue p-fluorosulfonylbenzoyl-5' adenosine. FSV mutants in which the codon for Lys-950 has been changed to codons for arginine or glycine encode metabolically stable but enzymatically defective proteins which are unable to effect neoplastic transformation. Kinase-defective P130gag-fps containing arginine at residue 950 was normally phosphorylated at serine residues in vivo suggesting that this amino acid substitution has a minimal effect on protein folding and processing. The inability of arginine to substitute for lysine at residue 950 suggests that the side chain of Lys-950 is essential for P130gag-fps catalytic activity, probably by virtue of a specific interaction with ATP at the phosphotransfer active site. Tyr-1073 of the Arg-950 P130gag-fps mutant protein was not significantly autophosphorylated either in vitro or in vivo, but could be phosphorylated in trans by enzymatically active P140gag-fps. These data indicate that Tyr-1073 can be modified by intermolecular autophosphorylation.  相似文献   

12.
Type I signal peptidases are integral membrane proteins that function to remove signal peptides from secreted and membrane proteins. These enzymes carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases. Site-directed scanning mutagenesis was used to obtain a qualitative assessment of which residues in the fifth conserved region, Box E, of the Escherichia coli signal peptidase I are critical for maintaining a functional enzyme. First, we find that there is no requirement for activity for a salt bridge between the invariant Asp-273 and the Arg-146 residues. In addition, we show that the conserved Ser-278 is required for optimal activity as well as conserved salt bridge partners Asp-280 and Arg-282. Finally, Gly-272 is essential for signal peptidase I activity, consistent with it being located within van der Waals proximity to Ser-278 and general base Lys-145 side-chain atoms. We propose that replacement of the hydrogen side chain of Gly-272 with a methyl group results in steric crowding, perturbation of the active site conformation, and specifically, disruption of the Ser-90/Lys-145 hydrogen bond. A refined model is proposed for the catalytic dyad mechanism of signal peptidase I in which the general base Lys-145 is positioned by Ser-278, which in turn is held in place by Asp-280.  相似文献   

13.
Key charged residues in Cu,Zn superoxide dismutase (Cu,Zn SOD) promote electrostatic steering of the superoxide substrate to the active site Cu ion, resulting in dismutation of superoxide to oxygen and hydrogen peroxide. Lys-136, along with the adjacent residues Glu-132 and Glu-133, forms a proposed electrostatic triad contributing to substrate recognition. Human Cu,Zn SODs with single-site replacements of Lys-136 by Arg, Ala, Gln, or Glu or with a triple-site substitution (Glu-132 and Glu-133 to Gln and Lys-136 to Ala) were made to test hypotheses regarding contributions of these residues to Cu,Zn SOD activity. The structural effects of these mutations were modeled computationally and validated by the X-ray crystallographic structure determination of Cu,Zn SOD having the Lys-136-to-Glu replacement. Brownian dynamics simulations and multiple-site titration calculations predicted mutant reaction rates as well as ionic strength and pH effects measured by pulse-radiolytic experiments. Lys-136-to-Glu charge reversal decreased dismutation activity 50% from 2.2 × 109 to 1.2 × 109 M−1 s−1 due to repulsion of negatively charged superoxide, whereas charge-neutralizing substitutions (Lys-136 to Gln or Ala) had a less dramatic influence. In contrast, the triple-mutant Cu,Zn SOD (all three charges in the electrostatic triad neutralized) surprisingly doubled the reaction rate compared with wild-type enzyme but introduced phosphate inhibition. Computational and experimental reaction rates decreased with increasing ionic strength in all of the Lys-136 mutants, with charge reversal having a more pronounced effect than charge neutralization, implying that local electrostatic effects still govern the dismutation rates. Multiple-site titration analysis showed that deprotonation events throughout the enzyme are likely responsible for the gradual decrease in SOD activity above pH 9.5 and predicted a pKa value of 11.7 for Lys-136. Overall, Lys-136 and Glu-132 make comparable contributions to substrate recognition but are less critical to enzyme function than Arg-143, which is both mechanistically and electrostatically essential. Thus, the sequence-conserved residues of this electrostatic triad are evidently important solely for their electrostatic properties, which maintain the high catalytic rate and turnover of Cu,Zn SOD while simultaneously providing specificity by selecting against binding by other anions. Proteins 29:103–112, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
We present a mutational analysis of vaccinia topoisomerase that highlights the contributions of five residues in the catalytic domain (Phe-88 and Phe-101 in helix alpha1, Ser-204 in alpha5, and Lys-220 and Asn-228 in alpha6) to the DNA binding and transesterification steps. When augmented by structural information from exemplary type IB topoisomerases and tyrosine recombinases in different functional states, the results suggest how closure of the protein clamp around duplex DNA and assembly of a functional active site might be orchestrated by internal conformational changes in the catalytic domain. Lys-220 is a constituent of the active site, and a positive charge at this position is required for optimal DNA cleavage. Ser-204 and Asn-228 appear not to be directly involved in reaction chemistry at the scissile phosphodiester. We propose that (i) Asn-228 recruits the Tyr-274 nucleophile to the active site by forming a hydrogen bond to the main chain of the tyrosine-containing alpha8 helix and that (ii) contacts between Ser-204 and the DNA backbone upstream of the cleavage site trigger a separate conformational change required for active site assembly. Mutations of Phe-88 and Phe-101 affect DNA binding, most likely at the clamp closure step, which we posit to entail a distortion of helix alpha1.  相似文献   

15.
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. Here we gained new insights to the TopIB mechanism through "chemical mutagenesis." Meta-substituted analogs of Tyr(274) were introduced by in vitro translation in the presence of a chemically misacylated tRNA. We report that a meta-OH reduced the rate of DNA cleavage 130-fold without affecting the rate of religation. By contrast, meta-OCH(3) and NO(2) groups elicited only a 6-fold decrement in cleavage rate. We propose that the meta-OH uniquely suppresses deprotonation of the para-OH nucleophile during the cleavage step. Assembly of the vaccinia TopIB active site is triggered by protein contacts with a specific DNA sequence 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrowN (where downward arrow denotes the cleavage site). A signature alpha-helix of the poxvirus TopIB ((132)GKMKYLKENETVG(144)) engages the target site in the major groove and thereby recruits catalytic residue Arg(130) to the active site. The effects of 11 missense mutations at Tyr(136) highlight the importance of van der Waals interactions with the 3'-G(+4)pG(+3)p dinucleotide of the nonscissile strand for DNA cleavage and supercoil relaxation. Asn(140) and Thr(142) donate hydrogen bonds to the pro-(S(p))-oxygen of the G(+3)pA(+2) phosphodiester of the nonscissile strand. Lys(133) and Lys(135) interact with purine nucleobases in the major groove. Whereas none of these side chains is essential per se, an N140A/T142A double mutation reduces the rate of supercoil relaxation and DNA cleavage by 120- and 30-fold, respectively, and a K133A/K135A double mutation slows relaxation and cleavage by 120- and 35-fold, respectively. These results underscore functional redundancy at the TopIB-DNA interface.  相似文献   

16.
We have previously shown that an antigenic site in native lysozyme resides around the disulphide bridge 30-115 and incorporates Lys-33 and Lys-116 and one or both of Tyr-20 and Tyr-23. These residues fall in an imaginary line circumscribing part of the surface of the molecule and passing through the spatially adjacent residues Tyr-20, Arg-21, Tyr-23, Lys-116, Asn-113, Arg-114, Phe-34 and Lys-33. The identity of the site was confirmed by demonstrating that the synthetic peptide Tyr-Arg-Tyr-Gly-Lys-Asn-Arg-Gly-Phe-Lys (which does not exist in lysozyme but simulates a surface region of it), and an analogue in which glycine replaced Tyr-23, possessed remarkable immuno-chemical reactivity that accounted entirely for the expected reactivity of the site in native lysozyme. Tyr-23 is not part of the site, and its contribution was satisfied by a glycine spacer. The novel approach presents a powerful technique for the delineation of antigenic (and other binding) sites in native proteins and confirms that these need not always comprise residues in direct peptide linkage.  相似文献   

17.
We investigated topoisomerase I activity at a specific camptothecin-enhanced cleavage site by use of a partly double-stranded DNA substrate. The cleavage site belongs to a group of DNA topoisomerase I sites which is only efficiently cleaved by wild-type topoisomerase I (topo I-wt) in the presence of camptothecin. With a mutated camptothecin-resistant form of topoisomerase I (topo I-K5) previous attempts to reveal cleavage activity at this site have failed. On this basis it was questioned whether the mutant enzyme has an altered DNA sequence recognition or a changed rate of catalysis at the site. Utilizing a newly developed assay system we demonstrate that topo I-K5 not only recognizes and binds to the strongly camptothecin-enhanced cleavage site but also has considerable cleavage/religation activity at this particular DNA site. Thus, topo I-K5 has a 10-fold higher rate of catalysis and a 10-fold higher affinity for DNA relative to topo I-wt. Our data indicate that the higher cleavage/religation activity of topo I-K5 is a result of improved DNA binding and a concomitant shift in the equilibrium between cleavage and religation towards the religation step. Thus, a recently identified point mutation which characterizes the camptothecin-resistant topo I-K5 has altered the enzymatic catalysis without disturbing the DNA sequence specificity of the enzyme.  相似文献   

18.
The TOPRIM DXDXXG residues of type IA and II topoisomerases are involved in Mg(II) binding and the cleavage-rejoining of DNA. Mutation of the strictly conserved glycine to serine in Yersinia pestis and Escherichia coli topoisomerase I results in bacterial cell killing due to inhibition of DNA religation after DNA cleavage. In this study, all other substitutions at the TOPRIM glycine of Y. pestis topoisomerase I were examined. While the Gly to Ala substitution allowed both DNA cleavage and religation, other mutations abolished DNA cleavage. DNA cleavage activity retained by the Gly to Ser mutant could be significantly enhanced by a second mutation of the methionine residue adjacent to the active site tyrosine. Induction of mutant topoisomerase with both the TOPRIM glycine and active site region methionine mutations resulted in up to 40-fold higher cell killing rate when compared with the single TOPRIM Gly to Ser mutant. Bacterial type IA topoisomerases are potential targets for discovery of novel antibiotics. These results suggest that compounds that interact simultaneously with the TOPRIM motif and the molecular surface around the active site tyrosine could be highly efficient topoisomerase poisons through both enhancement of DNA cleavage and inhibition of DNA rejoining.  相似文献   

19.
Methods of uncoupling the DNA binding, cleavage and religation reactions of topoisomerase II were employed to investigate the influence of topoisomerase II-directed drugs on the individual steps in the enzyme's catalytic cycle. A special DNA substrate containing a major topoisomerase II interaction site, which can be cleaved by the enzyme in the absence of any concomitant religation, was used to examine the effect of topoisomerase II-directed agents upon the DNA cleavage reaction. The experiment demonstrated that the topoisomerase II targeting agent Ro 15-0216 stimulates the DNA cleavage reaction extensively, whereas the traditional topoisomerase II inhibitor, mAMSA, has only a minor effect on this reaction. Topoisomerase II trapped in the cleavage complexes can religate to the 3' hydroxyl end of another DNA strand. Using this religation assay, it was demonstrated that the major effect of mAMSA is an inhibition of the enzyme's religation reaction, whereas Ro 15-0216 has no effect on this reaction. Recently, considerable attention has been given to drugs preventing topoisomerase II from introducing DNA cleavages. In the present paper the initial non-covalent DNA binding reaction of topoisomerase II was investigated under conditions excluding enzyme-mediated DNA cleavage. This demonstrated that the anthracycline, aclarubicin, prevents topoisomerase II from performing its initial non-covalent DNA binding reaction and thereby abolishes the DNA cleavage reaction of the enzyme. The results presented here demonstrate that profound differences exist in the mode of action of different agents targeting topoisomerase II, and that the enzyme can be affected by such agents at both its DNA binding, cleavage and religation subreactions.  相似文献   

20.
The tetradecapeptide Ac-D-F-L-A-E-G-G-G-V-R-G-P-R-V-OMe, which mimics residues 7f-20f of the A alpha-chain of human fibrinogen, has been co-crystallized with bovine thrombin from ammonium sulfate solutions in space group P2(1) with unit cell dimensions of a = 83.0 A, b = 89.4 A, c = 99.3 A, and beta = 106.6 degrees. Three crystallographically independent complexes were located in the asymmetric unit by molecular replacement using the native bovine thrombin structure as a model. The standard crystallographic R-factor is 0.167 at 2.3-A resolution. Excellent electron density could be traced for the decapeptide, beginning with Asp-7f and ending with Arg-16f in the active site of thrombin; the remaining 4 residues, which have been cleaved from the tetradecapeptide at the Arg-16f/Gly-17f bond, are not seen. Residues 7f-11f at the NH2 terminus of the peptide form a single turn of alpha-helix that is connected by Gly-12f, which has a positive phi angle, to an extended chain containing residues 13f-16f. The major specific interactions between the peptide and thrombin are 1) a hydrophobic cage formed by residues Tyr-60A, Trp-60D, Leu-99, Ile-174, Trp-215, Leu-9f, Gly-13f, and Val-15f that surrounds Phe-8f; 2) a hydrogen bond linking Phe-8f NH to Lys-97 O;3) a salt link between Glu-11f and Arg-173; 4) two antiparallel beta-sheet hydrogen bonds between Gly-14f and Gly-216; and 5) the insertion of Arg-16f into the specificity pocket. Binding of the peptide is accompanied by a considerable shift in two of the loops near the active site relative to human D-phenyl-L-prolyl-L-arginyl chloromethyl ketone (PPACK)-thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号