首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We report on the effects of self-assembled monolayer (SAM) dilution and thickness on the electron transfer (ET) event for cytochrome c (CytC) electrostatically immobilized on carboxyl terminated groups. We observed biphasic kinetic behavior for a logarithmic dependence of the rate constant on the SAM carbon number (ET distance) within the series of mixed SAMs of C(5)COOH/C(2)OH, C(10)COOH/C(6)OH, and C(15)COOH/C(11)OH that is in overall similar to that found earlier for the undiluted SAM assemblies. However, in the case of C(15)COOH/C(11)OH and C(10)COOH/C(6)OH mixed SAMs a notable increase of the ET standard rate constant was observed, in comparison with the corresponding unicomponent (omega-COOH) SAMs. In the case of the C(5)COOH/C(2)OH composite SAM a decrease of the rate constant versus the unicomponent analogue was observed. The value of the reorganization free energy deduced through the Marcus-like data analysis did not change throughout the series; this fact along with the other observations indicates uncomplicated rate-determining unimolecular ET in all cases. Our results are consistent with a model that considers a changeover between the alternate, tunneling and adiabatic intrinsic ET mechanisms. The physical mechanism behind the observed fine kinetic effects in terms of the protein-rigidifying omega-COOH/CytC interactions arising in the case of mixed SAMs are also discussed.  相似文献   

2.
Molecular dynamic simulations have been performed for wild-type Hydrogenobacter thermophilus cytochrome c(552), a b-type variant of the protein, and the apo state with the heme prosthetic group removed. In the b-type variant, Cys 10 and Cys 13 were mutated to alanine residues, and so the heme group was no longer covalently bound to the protein. Two 8-ns simulations have been performed for each system at 298 and 360 K. The simulations of the wild-type protein at 298 K show a very close agreement with experimental NMR data. A fluxional process involving the side chain of Met 59, which coordinates to the heme iron, is observed in accord with proposals from NMR studies. Overall, the structure and dynamical behavior of the protein during the simulations of the b-type variant is closely similar to that of the wild-type protein. However, side chains in the heme-binding site show larger fluctuations in the b-type variant simulation at 360 K. In addition, structural changes are seen for a number of residues close to the heme group, particularly Gly 22 and Ser 51. The simulations of the apo state show significant conformational changes for residues 50-59. These residues form a loop region, which packs over the heme group in the wild-type protein and hydrogen bonds to the heme propionate groups. In the absence of heme, in the apo state simulations, these residues form short but persistent regions of beta-sheet secondary structure. These could provide nucleation sites for the conversion to amyloid fibrils.  相似文献   

3.
Cytochrome c is one of the most studied proteins probably due to its electron-transfer properties in aerobic and anaerobic respiration. Particularly, cytochrome c from bovine heart is a small protein, M(r) 12,230 Da, globular (hydrodynamic diameter of 3.4 nm), soluble in different buffer solutions, and commercially available. Despite being a quite well-studied protein and relatively easy to manipulate from the biochemical and electrochemical viewpoint, its 3D structure has never been published. In this work, the purification, crystallization and 3D structure of one of the cytochrome c isoforms is presented to 1.5 A resolution. It is also shown how the presence of isoforms made both the purification and crystallization steps difficult. Finally, a new approach for protein electrocrystallization and design of biosensors is presented.  相似文献   

4.
Cytochrome c 552 (Cyt-c 552) and its redox partner ba 3 -oxidase from Thermus thermophilus possess structural differences compared with Horse heart cytochrome c (cyt-c)/cytochrome c oxidase (CcO) system, where the recognition between partners and the electron transfer (ET) process is initiated via electrostatic interactions. We demonstrated in a previous study by surface-enhanced resonance Raman (SERR) spectroscopy that roughened silver electrodes coated with uncharged mixed self-assembled monolayers HS–(CH2) n –CH3/HS–(CH2) n + 1–OH 50/50, n = 5, 10 or 15, was a good model to mimic the Cyt-c 552 redox partner. All the adsorbed molecules are well oriented on such biomimetic electrodes and transfer one electron during the redox process. The present work focuses on the kinetic part of the heterogeneous ET process of Cyt-c 552 adsorbed onto electrodes coated with such mixed SAMs of different alkyl chain length. For that purpose, two complementary methods were combined. Firstly cyclic voltammetry shows that the ET between the adsorbed Cyt-c 552 and the biomimetic electrode is direct and reversible. Furthermore, it allows the estimation of both the density surface coverage of adsorbed Cyt-c 552 and the kinetic constants values. Secondly, time-resolved SERR (TR-SERR) spectroscopy showed that the ET process occurs without conformational change of the Cyt-c 552 heme group and allows the determination of kinetic constants. Results show that the kinetic constant values obtained by TR-SERR spectroscopy could be compared to those obtained from cyclic voltammetry. They are estimated at 200, 150 and 40 s−1 for the ET of Cyt-c 552 adsorbed onto electrodes coated with mixed SAMs HS–(CH2) n –CH3/HS–(CH2) n + 1–OH 50/50, n = 5, 10 or 15, respectively. Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet France, 14–19 October, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号