首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Human CuZn superoxide dismutase (HSOD) has two free cysteines: a buried cysteine (Cys6) located in a beta-strand, and a solvent accessible cysteine (Cys111) located in a loop region. The highly homologous bovine enzyme (BSOD) has a single buried Cys6 residue. Cys6 residues in HSOD and BSOD were replaced by alanine and Cys111 residues in HSOD by serine. The mutant enzymes were expressed and purified from yeast and had normal specific activities. The relative resistance of the purified proteins to irreversible inactivation of enzymatic activity by heating at 70 degrees C was HSOD Ala6 Ser111 greater than BSOD Ala6 Ser109 greater than BSOD Cys6 Ser109 (wild type) greater than HSOD Ala6 Cys111 greater than HSOD Cys6 Ser111 greater than HSOD Cys111 (wild type). In all cases, removal of a free cysteine residue increased thermostability.  相似文献   

2.
The beta 1,3-glycosyltransferase enzymes identified to date share several conserved regions and conserved cysteine residues, all being located in the putative catalytic domain. To investigate the importance of these motifs and cysteines for the enzymatic activity, 14 mutants of the murine beta 1,3-galactosyltransferase-I gene were constructed and expressed in Sf9 insect cells. Seven mutations abolished the galactosyltransferase activity. Kinetic analysis of the other seven active mutants revealed that three of them showed a threefold to 21-fold higher apparent K(m) with regard to the donor substrate UDP-galactose relative to the wild-type enzyme, while two mutants had a sixfold to 7.5-fold increase of the apparent K(m) value for the acceptor substrate N-acetylglucosamine-beta-p-nitrophenol. Taken together, our results indicate that the conserved residues W101 and W162 are involved in the binding of the UDP-galactose donor, the residue W315 in the binding of the N-acetylglucosamine-beta-p-nitrophenol acceptor, and the domain including E264 appears to participate in the binding of both substrates.  相似文献   

3.
Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.  相似文献   

4.
Chiang WC  Knowles AF 《Biochemistry》2008,47(33):8775-8785
Human NTPDase 2 is a cell surface integral membrane glycoprotein that is anchored to the membranes by two transmembrane domains while the bulk of the protein containing the active site faces the extracellular milieu. It contains 10 conserved cysteine residues in the extracellular domain that are involved in disulfide bond formation and one free cysteine residue, C26, which is located in the N-terminal transmembrane domain. The human NTPDase 2 activity is inactivated by membrane perturbation that disrupts interaction of the transmembrane domains and is inhibited by p-chloromercuriphenylsulfonate (pCMPS), a sulfhydryl reagent. In this report, we show that C26 is the target of pCMPS modification, since a mutant in which C26 was replaced with a serine was no longer inhibited by pCMPS. Mutants in which cysteine residues are placed in the C-terminal transmembrane domain near the extracellular surface were still modified by pCMPS, but the degree of inhibition of their ATPase activity was lower than that of the wild-type enzyme. Thus, loss of the ATPase activity of human NTPDase 2 in the presence of pCMPS probably results from the disturbance of both transmembrane domain interaction and its active site. Inhibition of human NTPDase 2 activity by pCMPS and membrane perturbation is attenuated when the enzyme is cross-linked by glutaraldehyde. On the other hand, NTPDase 2 dimers formed from oxidative cross-linking of the wild-type enzyme and mutants containing a single cysteine residue in the C-terminal transmembrane domain displayed reduced ATPase activity. A similar reduction in activity was also obtained upon intramolecular disulfide formation in mutants that contain a cysteine residue in each of the two transmembrane domains. These results indicate that the mobility of the transmembrane helices is necessary for maximal catalysis.  相似文献   

5.
Platelet-derived growth factor (PDGF) is a dimeric factor stabilized by disulfide bonds. Using an approach involving partial reduction of PDGF, we have identified the 2nd and 4th cysteine residues in the PDGF chains as the cysteine residues forming interchain disulfide bonds. Analysis of PDGF mutants in which the 2nd and 4th cysteine residues were mutated to serine residues revealed that the disulfide bonds are arranged in a cross-wise manner, with the 2nd cysteine residue in one chain being linked to the 4th cysteine residue in the other. A PDGF B-chain mutant, in which both the 2nd and 4th cysteine residues were substituted with serine residues, migrated as a monomer in sodium dodecyl sulfate gel electrophoresis and retained receptor binding activity. When analyzed in receptor dimerization and autophosphorylation assays, this mutant showed agonistic activity. Thus, structural information has been obtained that will allow the large scale production of properly folded monomeric PDGF, as well as design of specific PDGF heterodimers.  相似文献   

6.
The CheR methyltransferase catalyzes the transfer of methyl groups from S-adenosylmethionine to specific glutamyl residues in bacterial chemoreceptor proteins. Studies with sulfhydryl reagents such as p-chloromercuribenzoate, N-ethylmaleimide, and 5,5'-dithiobis(2-nitrobenzoate) suggest that a cysteine residue is required for enzyme activity. The nucleotide sequence of the cheR gene predicts a 288-amino acid protein with cysteine residues at positions 31 and 229. To ascertain the role of these cysteine residues in the structure and function of the enzyme, oligonucleotide-directed mutagenesis was used to change each cysteine to serine. Whereas the Cys229-Ser mutation had essentially no effect on transferase activity, the Cys31-Ser mutation caused an 80% decrease in enzyme activity. The double mutant in which both cysteines were replaced by serines also had markedly reduced transferase activity. Preincubation of the wild type or Cys229-Ser proteins with either S-adenosylmethionine or beta-mercaptoethanol protected it from inhibition by sulfhydryl reagents, whereas prior incubation with the second substrate, the Tar receptor, gave partial protection. From these studies, Cys31 appears to be necessary for enzyme activity, and it seems to be located in the vicinity of the active site.  相似文献   

7.
CheB, the methylesterase of chemotactic bacteria, catalyzes the hydrolysis of glutamyl-methyl esters in bacterial chemoreceptor proteins. The two cysteines predicted by the amino acid sequence of CheB were replaced by alanine residues. The resulting mutants, Cys207-Ala, Cys309-Ala and a double cysteine mutant Cys207-Ala/Cys309-Ala, retained methylesterase activity, indicating that sulfhydryls are not crucial for CheB mediated catalysis. A homology search revealed a conserved serine active-site region between residues 162 and 166 which is homologous to the active-site region of acetylcholine esterases, suggesting that Ser164 of CheB is the active-site nucleophile. Oligonucleotide-directed mutagenesis was used to change the serine to a cysteine. This Ser164-Cys mutant had less than 2% of the wild-type activity. Unlike the serine proteinases which utilize a 'catalytic triad' mechanism, CheB does not have the conserved histidine and aspartic acid residues located in positions N-terminal to the active-site serine. In addition, CheB is not labeled with di-isopropylfluorophosphate, a potent inhibitor of other serine hydrolases. A novel mechanism is proposed for CheB involving substrate-assisted catalysis to account for these apparent anomalies.  相似文献   

8.
S W Kim  S Joo  G Choi  H S Cho  B H Oh    K Y Choi 《Journal of bacteriology》1997,179(24):7742-7747
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.  相似文献   

9.
Renin-binding protein (RnBP) is an endogenous renin inhibitor originally isolated from porcine kidney. It was recently identified as the enzyme N-acetyl-D-glucosamine (GlcNAc) 2-epimerase [Takahashi, S. et al. (1999) J. Biochem. 125, 348-353] and its active site residue was determined to be cysteine 380 by site-directed mutagenesis [Takahashi, S. et al. (1999) J. Biochem. 126, 639-642]. To further investigate the relationship between structure and function of recombinant human (rh) RnBP as a GlcNAc 2-epimerase, we have constructed several C-terminal deletion and multi-cysteine/serine mutants of rhGlcNAc 2-epimerase and expressed them in Escherichia coli cells. The expression was detected by Western blotting using anti-rhRnBP antiserum. The C-terminal deletion mutant, Delta400-417, had approximately 50% activity relative to the wild-type enzyme, but other C-terminal deletion mutants, Delta380-417, Delta386-417, and Delta390-417, had no enzymatic activity. Mutational analysis of multi-cysteine/serine mutants revealed that cysteines 41 and 390 were critical for the activity or stabilization of the enzyme, while cysteine residues in the middle of the enzyme, cysteines 125, 210, 239, and 302, had no essential function in relation to the activity.  相似文献   

10.
Structural studies of the human transferrin receptor have shown that the molecule is a disulfide-bonded dimer consisting of two identical subunits (Mr = 95,000) which are post-translationally modified by the addition of a fatty acyl moiety. Oligonucleotide site-directed mutagenesis has been used to obtain mutant molecules in which each of the four cysteines, residues 62, 67, 89 and 98, clustered within or adjacent to the membrane-spanning region were modified to serine. By first preparing mutants with only one of these cysteine residues modified to serine and then obtaining additional mutants in which different combinations of two cysteine residues were modified, we have shown that both cysteine 89 and cysteine 98, which are located in the extracellular domain of the receptor, are involved in intermolecular disulfide bonds. Further, we have identified cysteine 62 as the major site of acylation. Each of the mutant molecules is synthesized and transported to the cell surface when the modified human transferrin receptor cDNAs are transiently expressed in simian Cos cells. It should therefore now be possible to design experiments to determine whether these modified receptors bind transferrin normally and mediate iron uptake.  相似文献   

11.
The E. coli ogt O6-alkylguanine-DNA alkyltransferase has two cysteine residues positioned identically with respect to cysteines in the E. coli ada O6-alkylguanine-DNA alkyltransferase. In order to assess their function, these residues were each substituted by a glycine to generate altered forms of the ogt protein. Mutagenesis of cysteine-139, located within a 'PCHRV' region of homology, eliminated functional activity confirming that this residue is the methyl-accepting cysteine in the active site of the protein. Substitution of cysteine 102 within the sequence 'LRTIPCG' had little effect on the ogt protein activity demonstrating that this cysteine is not directly involved with the transfer of O6-methylguanine adducts.  相似文献   

12.
1. Chemical modification of essential serine, histidine and cysteine residues of porcine LCAT were accompanied by loss of enzymatic activity. 2. Modification of cysteine with DTNB inactivated the enzyme which could not be reactivated by KCN suggesting direct involvement of the cysteine residue(s) in catalysis. 3. About half of the primary structure of the porcine enzyme was determined. 4. Respective regions of the human and porcine LCAT are highly homologous; especially, the amino-terminus and the region surrounding the DFP-labeled serine residues. 5. The observed primary structure differences represent amino acid substitutions that are projected to induce significant changes in secondary structure.  相似文献   

13.
N-Acetylglucosamine is a major component of complex carbohydrates. The mammalian salvage pathway of N-acetylglucosamine recruitment from glycoconjugate degradation or nutritional sources starts with phosphorylation by N-acetylglucosamine kinase. In this study we describe the identification of two active site cysteines of the sugar kinase by site-directed mutagenesis and computer-based structure prediction. Murine N-acetylglucosamine kinase contains six cysteine residues, all of which were mutated to serine residues. The strongest reduction of enzyme activity was found for the mutant C131S, followed by C143S. Determination of the kinetic properties of the cysteine mutants showed that the decreased enzyme activities were due to a strongly decreased affinity to either N-acetylglucosamine for C131S, or ATP for C143S. A secondary structure prediction of N-acetylglucosamine kinase showed a high homology to glucokinase. A model of the three-dimensional structure of N-acetylglucosamine kinase based on the known structure of glucokinase was therefore generated. This model confirmed that both cysteines are located in the active site of N-acetylglucosamine kinase with a potential role in the binding of the transferred gamma-phosphate group of ATP within the catalytic mechanism.  相似文献   

14.
Okudo H  Urade R  Moriyama T  Kito M 《FEBS letters》2000,465(2-3):145-147
ER-60 protease contains two CGHC motifs that appear to include an active site cysteine residue(s). Its proteolytic activity was lost with a double mutation of the C-terminal cysteines of the two motifs to alanine, but not with a single mutation of the C-terminal cysteine of either of the motifs to alanine. This suggests that these C-terminal cysteines independently constitute the catalytic active site. A mutation of both histidine residues in the two CGHC motifs to serine did not abolish the proteolytic activity, suggesting these histidine residues in the CGHC motifs do not constitute the catalytic dyad of ER-60 protease.  相似文献   

15.
The gastric proton pump, H(+),K(+)-ATPase, consists of the catalytic alpha-subunit and the non-catalytic beta-subunit. Correct assembly between the alpha- and beta-subunits is essential for the functional expression of H(+),K(+)-ATPase. The beta-subunit contains nine conserved cysteine residues; two are in the cytoplasmic domain, one in the transmembrane domain, and six in the ectodomain. The six cysteine residues in the ectodomain form three disulfide bonds. In this study, we replaced each of the cysteine residues of the beta-subunit with serine individually and in several combinations. The mutant beta-subunits were co-expressed with the alpha-subunit in human embryonic kidney 293 cells, and the role of each cysteine residue or disulfide bond in the alpha/beta assembly, stability, and cell surface delivery of the alpha- and beta-subunits and H(+),K(+)-ATPase activity was studied. Mutant beta-subunits with a replacement of the cytoplasmic and transmembrane cysteines preserved H(+),K(+)-ATPase activity. All the mutant beta-subunits with replacement(s) of the extracellular cysteines did not assemble with the alpha-subunit, resulting in loss of H(+),K(+)-ATPase activity. These mutants did not permit delivery of the alpha-subunit to the cell surface. Therefore, each of these disulfide bonds of the beta-subunit is essential for assembly with the alpha-subunit and expression of H(+),K(+)-ATPase activity as well as for cell surface delivery of the alpha-subunit.  相似文献   

16.
Fatty acid amide hydrolase is an integral membrane protein that hydrolyzes a novel and growing class of neuromodulatory fatty acid molecules, including anandamide, 2-arachidonyl glycerol, and oleamide. This activity is inhibited by serine and cysteine reactive agents, suggesting that the active site contains a serine or cysteine residue. Therefore serine and cysteine residues were mutated to alanine and the effects on activity were determined. Mutants were prepared using site-directed mutagenesis methods and expressed in COS-7 cells. Serine mutations S217A and S241A completely abolished enzymatic activity. Mutants S152A and C249A had no effect on activity, while S218A showed a slight decrease in activity. To confirm these results biochemically, the mutant enzymes were reacted with the irreversible inhibitor [(14)C]-diisopropyl fluorophosphate. All of the mutants except S217A and S241A were labeled. We therefore confirm that fatty acid amide hydrolase is a serine hydrolase and propose that both Ser-217 and Ser-241 are essential for enzyme activity.  相似文献   

17.
ERp57, a member of the protein-disulfide isomerase family, although mainly localized in the endoplasmic reticulum is here shown to have a nuclear distribution. We previously showed the DNA-binding properties of ERp57, its association with the internal nuclear matrix, and identified the C-terminal region, containing the a' domain, as being directly involved in the DNA-binding activity. In this work, we demonstrate that its DNA-binding properties are strongly dependent on the redox state of the a' domain active site. Site-directed mutagenesis experiments on the first cysteine residue of the -CGHC-thioredoxin-like active site lead to a mutant domain (C406S) lacking DNA-binding activity. Biochemical studies on the recombinant domain revealed a conformational change associated with the redox-dependent formation of a homodimer, having two disulfide bridges between the cysteine residues of two a' domain active sites. The formation of intermolecular disulfide bridges rather than intramolecular oxidation of active site cysteines is important to generate species with DNA-binding properties. Thus, in the absence of any dedicated motif within the protein sequence, this structural rearrangement might be responsible for the DNA-binding properties of the C-terminal domain. Moreover, NADH-dependent thioredoxin reductase is active on intermolecular disulfides of the a' domain, allowing the control of dimeric protein content as well as its DNA-binding activity. A similar behavior was also observed for whole ERp57.  相似文献   

18.
19.
20.
Sulfatases are a major group of enzymes involved in many critical physiological processes as reflected by their broad distribution in all three domains of life. This class of hydrolases is unique in requiring an essential post-translational modification of a critical active-site cysteine or serine residue to C(alpha)-formylglycine. This modification is catalyzed by at least three nonhomologous enzymatic systems in bacteria. Each enzymatic system is currently considered to be dedicated to the modification of either cysteine or serine residues encoded in the sulfatase-active site and has been accordingly categorized as Cys-type and Ser-type sulfatase-maturating enzymes. We report here the first detailed characterization of two bacterial anaerobic sulfatase-maturating enzymes (anSMEs) that are physiologically responsible for either Cys-type or Ser-type sulfatase maturation. The activity of both enzymes was investigated in vivo and in vitro using synthetic substrates and the successful purification of both enzymes facilitated the first biochemical and spectroscopic characterization of this class of enzyme. We demonstrate that reconstituted anSMEs are radical S-adenosyl-l-methionine enzymes containing a redox active [4Fe-4S](2+,+) cluster that initiates the radical reaction by binding and reductively cleaving S-adenosyl-l-methionine to yield 5 '-deoxyadenosine and methionine. Surprisingly, our results show that anSMEs are dual substrate enzymes able to oxidize both cysteine and serine residues to C(alpha)-formylglycine. Taken together, the results support a radical modification mechanism that is initiated by hydrogen abstraction from a serine or cysteine residue located in an appropriate target sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号