首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During pregnancy in mice, uterine natural killer (uNK) cells abundantly accumulate on the mesometrial side of the placenta. In this study, we show that the presence of both mature and immature uNK cells requires IL-15. Bone marrow transplantation of NK cell-negative mice due to null mutations in the recombination-activating gene (Rag) 2/common cytokine receptor gamma-chain (Rag2(-/-)gamma(c)(-/-)) genes indicated that uNK cells originate from the bone marrow and require IL-15 to develop. NK cells are thought to be central players in the immune response to intracellular pathogens such as Listeria monocytogenes, a bacterium that also has a predilection for replication in the placenta. However, IL-15(-/-), NK cell-deficient mice were relatively protected from this infection compared with wild-type mice, and during pregnancy the absence of NK cells did not compromise the immune response at this site. The loss of uNK cells results in decidual abnormalities, including thickening of the arterial walls with luminal narrowing and a hypocellular decidua basalis. These defects were rescued by bone marrow transplantation of the Rag2(-/-)gamma(c)(-/-) mice that restored the uNK cell population. The decidual abnormalities in the IL-15(-/-) mice however did not result in infertility as gestation times and litter sizes were comparable to those of wild-type mice. Fetal weights were mildly compromised, consistent with the arterial pathologies. These results show that uNK cells are not required for successful pregnancy and that NK cells are not essential for an adequate immune response to L. monocytogenes in either pregnant or nonpregnant mice.  相似文献   

2.
3.
Interferon-gamma contributes to the normalcy of murine pregnancy.   总被引:15,自引:0,他引:15  
Uterine natural killer (uNK) cells are transient, large, heavily granulated, maternal lymphocytes present on the mesometrial side of the pregnant mouse uterus. These cells contribute to normal implantation site development. Cytokine production, particularly interferon (IFN)-gamma, is a major function of most NK cell subsets. In this study, uNK cells were assessed for IFN-gamma production. Local concentrations of IFN-gamma were measured in the mesometrial regions of murine implantation sites between Days 6 and 16 of gestation. IFN-gamma was detected by ELISA at all days studied in a random-bred (CD1) and an inbred (BALB/c) strain of immune-competent mouse and in two immune-deficient strains, SCID (NK(+), T(-), B(-)) and tgepsilon26 (NK(-), T(-), B(+)). Concentrations of IFN-gamma per implantation site peaked at Day 10 of gestation in NK(+) strains but were low and relatively constant in NK(-) mice. To evaluate the functions of IFN-gamma at murine implantation sites, pregnancy was studied in homozygously mated IFN-gamma(-/-) and IFN-gammaRalpha(-/-) mice and their congenic controls. Primiparous but not multiparous IFN-gamma(-/-) mice experienced significant fetal loss. Primiparous IFN-gammaRalpha(-/-) carried full litters to term. Implantation site pathology was demonstrated in both strains of gene-deleted mice by light microscopy and ultrastructurally. This included elevated numbers of uNK cells that contained fewer and smaller granules and, after Day 10 of gestation, progressive necrosis and loss of decidua. The presence of a fetus able to produce IFN-gamma did not modify the phenotype of pregnant IFN-gamma(-/-) mice. This study indicates that during murine pregnancy, uNK cells are the main source of IFN-gamma on the mesometrial side of the uterus and that IFN-gamma contributes to normal health of the midgestational decidua. Furthermore, evidence is presented that IFN-gamma-producing cells exist in mesometrial regions of implantation sites that are neither NK nor T cells.  相似文献   

4.
In mouse and human, precursors of NK cell lineage home to decidualizing uteri. To assess the requirement for IL-15, an essential cytokine for NK differentiation in lymphoid tissue, on uterine NK (uNK) cell differentiation, implantation sites from IL-15(-/-) mice were analyzed histologically. IL-15(-/-) implantation sites had no uNK cells, no spiral-artery modification, and lacked the decidual integrity found in normal mice. IL-15(-/-) recipients of C57BL/6 marrow displayed similar pathology. However, implantation sites from recombination-activating gene-2(-/-)gamma(c)(-/-) (alymphoid) recipients of IL-15(-/-) marrow showed normal uNK cells, modified spiral arteries, and well-developed decidua basalis. Deletion of the IFN-regulatory factor (IRF)-1, but not IRF-2 (factors important in peripheral NK cell differentiation) limited but did not prevent uNK cell development. In situ hybridization localized IRF-1 largely to placental trophoblast cells. IRF-1(-/-) marrow transplanted into recombination-activating gene-2(-/-)gamma(c)(-/-) displayed competence for full uNK cell differentiation. IL-15 mRNA expression at implantation sites of IRF-1(-/-) and C57BL/6 was similar, suggesting that, unlike in bone marrow and spleen, IRF-1 does not regulate IL-15 in the pregnant uterus. Terminal differentiation of uNK cells was not promoted in pregnant IRF-1(-/-) mice by 5-day infusion of murine rIL-15, suggesting that IRF-1 deficiency rather than IL-15 deficiency limits uNK cell differentiation in these mice. Further, IRF-1 regulates placental growth, birth weight, and postnatal growth of offspring. These studies indicate that uNK cell development and maturation share some aspects with NK cell development in other tissues, but also display distinctive tissue-specific regulation.  相似文献   

5.
6.
7.
NK cells are the most abundant lymphocyte population in the feto-maternal interface during gestation. The uterine NK cells (uNK) are transient, have a unique immunophenotype and produce a number of cytokines. These cytokines play an important role in establishment and maintenance of vascular remodeling and tolerance associated with successful pregnancy. The uNK cells also express TIM-3 during gestation and blockade of TIM-3 expression results in fetal loss in mice. In this study we determined the effect of TIM-3 blockade on uNK cells. Specifically we observed surface receptor phenotype and cytokine production by uNK cells following TIM-3 blockade. Our results show that TIM-3 plays a role in regulating the uNK cells and contributes to the maintenance of tolerance at the feto-maternal interface.  相似文献   

8.
We have previously shown that NK lineage cells migrate to the murine decidua of pregnancy; but with advancing gestation, they are progressively inactivated in situ by prostaglandins of the E series (PGE2) secreted by decidual cells and decidual macrophages. We have also shown that the same mechanism inactivates all killer lineage cells in the human decidua, and that this inactivation is at least in part due to a down-regulation of IL-2 receptors and an inhibition of IL-2 production in situ. We examined whether chronic indomethacin therapy (to block prostaglandin synthesis), or a systemic administration of a high dose of IL-2, or a combination of both agents administered to pregnant mice could activate killer cells in situ and interfere with the progress of pregnancy; and if so, whether there was a causal relationship between the two events. Pregnant CD1 mice (Day 5 of gestation) were subjected to chronic indomethacin therapy (14 micrograms/ml in drinking water up to Day 15, or 50 micrograms twice daily sc or ip up to Day 10), high dose IL-2 therapy (25,000 Cetus U of human recombinant IL-2, ip every 8 or 12 hr for 3-5 days), or a combination of the two. These treatments led to pregnancy loss in 89-100% of mice, in contrast to 1% loss in control, vehicle-treated mice. Uterine mononuclear cells isolated from the embryo resorption sites exhibited high killer activity against YAC-1 lymphoma as well as murine trophoblast targets, with NK-like phenotype (Asialo GM-1+, Thy-1-) after indomethacin therapy and LAK-like phenotype (AGM-1+, Thy-1+) after IL-2 or indomethacin + IL-2 therapy. That AGM-1+ killer cells resulted in the pregnancy loss was suggested by the findings that in two of three separate experiments, iv injections of AGM-1 ab into pregnant indomethacin + IL-2-treated mice nearly completely prevented the fetoplacental demise (reducing it to 7.7% from 100%). These results reveal that PGE2-mediated inactivation of killer lineage cells in the decidua in situ is conducive to the survival of the conceptus.  相似文献   

9.
IL-10 is highly expressed in the uterus and placenta and is implicated in controlling inflammation-induced pathologies of pregnancy. To investigate the role of IL-10 in regulating preterm labor, the response of IL-10 null mutant mice to low-dose LPS in late gestation was evaluated. When IL-10 null mutant C57BL/6 (IL-10(-/-)) and control (IL-10(+/+)) mice were administered LPS on day 17 of pregnancy, the dose of LPS required to elicit 50% preterm fetal loss was 10-fold lower in IL-10(-/-) mice than in IL-10(+/+) mice. Surviving fetuses in IL-10(-/-) mice exhibited fetal growth restriction at lower doses of LPS than IL-10(+/+) mice. Marked elevation of LPS-induced immunoactive TNF-alpha and IL-6 was evident in the serum, uterus, and placenta of IL-10(-/-) mice, and TNF-alpha and IL-6 mRNA expression was elevated in the uterus and placenta, but not the fetus. Serum IL-1alpha, IFN-gamma, and IL-12p40 were increased and soluble TNFRII was diminished in the absence of IL-10, with these changes also reflected in the gestational tissues. Administration of rIL-10 to IL-10(-/-) mice attenuated proinflammatory cytokine synthesis and alleviated their increased susceptibility to preterm loss. Exogenous IL-10 also protected IL-10(+/+) mice from fetal loss. These data show that IL-10 modulates resistance to inflammatory stimuli by down-regulating proinflammatory cytokines in the uterus and placenta. Abundance of endogenous IL-10 in gestational tissues is therefore identified as a critical determinant of resistance to preterm labor, and IL-10 may provide a useful therapeutic agent in this common condition.  相似文献   

10.
Activated natural killer (NK) cells proliferate in large numbers in murine mesometrial endometrium from Day 6 to Day 12 of gestation (term = 19 gestation days) to become the most abundant uterine lymphocytes. Early human decidua contains analogous CD56+/CD16- cells. Murine uterine (u)NK cells localize to decidua basalis and mesometrial lymphoid aggregate of pregnancy (MLAp). Decidua and MLAp are transient, pregnancy-associated tissues traversed by maternal arteries to the placentas. Uterine NK cells sensitize these arteries, facilitating their structural changes into high-volume conduits by Gestation Day 10 through release of interleukin (IL)-18, interferon (IFN)-gamma, vascular endothelial growth factor (VEGF), and other molecules. Little information exists concerning where, when, or how murine or human uNK cells become activated. In murine lymphoid tissue, three NK cell adaptor-mediated activation pathways are known: FcRgamma/CD3zeta, DNAX-activating protein (DAP) 10, and DAP12 (genes Fcgr3/Cd3z, Hcst, and Tyrobp, respectively). Expression of ligands for these receptors was demonstrated in implantation sites of normal C57BL/6J mice. Then, histological and morphometric analyses of implantation sites in mice with genetic inactivation of each pathway were undertaken. Implantation sites in DAP10-/- (Hcst deleted) mice appeared normal, spiral artery modification occurred, and concentrations of IFN-gamma in MLAp and decidua basalis were similar to those in time-matched C57BL/6J. Implantation sites of FcRgamma-/-/CD3zeta-/- (Fcgr3/Cd3z double knockout), DAP12 (Tyrobp)-loss-of-function-mutant, and FcRgamma-/-/DAP12-/- (Fcgr3/Tyrobp double knockout) mice differentiated abundant but functionally impaired uNK cells that could not modify spiral arteries. These data reveal key importance of FcRgamma-/-/CD3zeta-/- and thus maternal IgG during activation of mouse uNK cells and assign DAP12 but not DAP10 signaling contributions.  相似文献   

11.
Typhoid fever and gastroenteritis caused by Salmonella enterica species are increasing globally. Pregnancy poses a high risk, but it is unclear how maternal immunity to infection is altered. In mice, susceptible strains die of S. enterica serovar typhimurium (ST) infection within 7 days whereas resistant mice (129 x 1/SvJ) develop a chronic infection. We found that virulent ST infection during pregnancy, in normally resistant 129 x 1/SvJ mice, evoked approximately 100% fetal loss and surprisingly >60% host fatality, with a median survival of 6 days. Splenic bacterial load was 1000-fold higher in pregnant mice. This correlated to a diminished splenic recruitment/expansion of innate immune cells: dendritic cells, neutrophils, and NK cells. In particular, the splenic expansion and activation of NK cells postinfection seen in nonpregnant mice was lacking in pregnancy. Most notably, pregnant-infected mice had decreased production of serum IL-12 and increased IL-6 levels. Moreover, uteroplacental tissue of pregnant-infected mice exhibited an approximately 40-fold increase in IL-6 mRNA expression relative to noninfected placenta, whereas IL-12p40 was not increased. In vivo blocking of IL-6 significantly reduced the splenic bacterial burden in pregnant mice yet failed to prevent fetal loss. Fetal demise correlated to the rapidity of infection; by 14 h, ST expanded to >10(5) in the placenta and had reached the fetus. Therefore, the preferential placental expansion of ST plausibly altered the inflammatory response toward IL-6 and away from IL-12, reducing the recruitment/activation of splenic innate immune cells. Thus, highly virulent pathogens may use placental invasion to alter systemic host resistance to infection.  相似文献   

12.
Uterine NK (uNK) cells are abundant in human and murine uteri during decidualization. It is unclear whether precursors of uNK (pre-uNK) cells self-renew or are recruited from other sites. To assess self-renewal of pre-uNK cells, uterine segments from NK cell-competent mice were grafted orthotopically into NK/uNK cell-deficient or wild-type mice. Only in wild-type recipients did decidualized grafts contain uNK cells, indicating that pre-uNK cells do not self-renew in uterus. To identify pre-uNK cell sources, thymus, bone marrow, lymph node, or spleen cells were grafted from virgin or pregnant NK cell-competent donors into mated NK/uNK cell-deficient recipients. Cells from secondary lymphoid tissues of pregnant donors gave high level uNK cell reconstitution, which was independent of chemokine receptors CCR2 or CCR5. Pregnancy-induced changes to lymphocyte-endothelial cell interactions were documented using adhesion of human lymphocytes to frozen mouse tissue sections under shear. A dynamic increase was observed in L-selectin- and alpha(4) integrin-dependent adhesion of CD56(bright) NK cells to decidualizing uterus and in human PBL adhesion to lymph node endothelium. These data support a model that attributes the dramatic increases in human and murine uNK cells during decidualization to precursor cell recruitment.  相似文献   

13.
Natural killer cells, which play a pivotal role in the establishment and maintenance of normal pregnancy, are the most abundant leukocytes at the fetomaternal interface that their subsets frequencies and cytokine profile are influential factors in the preservation of the decidual tolerogenic microenvironment. Any imbalance in NK cells' frequency and functions could be associated with pregnancy failure. Mesenchymal stem cells (MSCs) are shown to have immunomodulatory effects on NK cells and their cytokine profile. The purpose of this study is to evaluate the impact of MSCs therapy on the cytokine profiles and subpopulations of NK cells in a murine model of recurrent pregnancy loss. Adipose-derived MSCs were injected intraperitoneally to the abortion-prone mice on Day 4.5 of gestation. The abortion rate was determined after MSCs administration and the frequency and cytokine profiles of the different subsets of NK cells were determined using the flow cytometry. Our results showed that, in abortion-prone mice, the frequency of CD49b+ NK cells was significantly higher than normal pregnant mice that decreased after therapy. We also demonstrated that MSCs downregulated the production of IFN-γ and upregulated IL-4 and IL-10 production by uNK cells. These findings indicate that MSCs can decrease the infiltration of CD49b+ NK cells to the fetomaternal interface and modulate the cytokine profile of NK cells from inflammatory to tolerogenic profile and thereby improve the tolerogenic microenvironment at the fetomaternal interface in benefit of pregnancy maintenance.  相似文献   

14.
Uterine NK (uNK) cells express a unique set of markers compared with blood NK cells. However, recent studies suggest that uNK cells may be derived from the recruitment of blood NK cells into the endometrium. In this study, we used an in vitro organ culture system to demonstrate that estradiol induces expression of chemokines CXCL10 and/or CXCL11 within human endometrium in 85% of patient samples tested. The average increase in gene expression after 10(-9) M estradiol treatment was 8.5-fold for CXCL10 and 7.7-fold for CXCL11 compared with medium alone. We observed that a specific estrogen receptor antagonist (ICI182780) was able to prevent chemokine gene induction, indicating that the effect of estradiol was receptor mediated. Moreover, our study showed that progesterone induced CXCL10 and CXCL11 expression in 83% of endometrial samples tested. We have also found that uNK cells and blood NK cells express the receptor for CXCL10 and CXCL11, CXCR3, with the highest expression found on uNK cells and CD56(bright) blood NK cells. These data indicate that sex hormones induce specific chemokines in nonpregnant human endometrium that can activate NK cell migration, and suggest that this mechanism may account for the increased NK cell numbers in endometrium during the menstrual cycle.  相似文献   

15.
Uterine NK (uNK) cells are a prominent feature of the uterine mucosa and regulate placentation. NK cell activity is regulated by a balance of activating and inhibitory receptors, however the receptor repertoire of mouse uNK cells is unknown. We describe herein two distinct subsets of CD3(-)CD122(+) NK cells in the mouse uterus (comprising decidua and mesometrial lymphoid aggregate of pregnancy) at mid-gestation: a small subset indistinguishable from peripheral NK cells, and a larger subset that expresses NKp46 and Ly49 receptors, but not NK1.1 or DX5. This larger subset reacts with Dolichus biflores agglutinin, a marker of uNK cells in the mouse, and is adjacent to the invading trophoblast. By multiparametric analysis we show that the phenotype of uNK cells is unique and unprecedented in terms of adhesion, activation, and MHC binding potential. Thus, the Ly49 repertoire and the expression of other differentiation markers strikingly distinguish uNK cells from peripheral NK cells, suggesting that a selection process shapes the receptor repertoire of mouse uNK cells.  相似文献   

16.
Immunogenetic studies suggest that interactions between maternal killer Ig-like receptor (KIR) expressed by uterine NK (uNK) cells, and fetal HLA-C molecules on trophoblast, influence the success of human placentation. However, the exact functional response of fresh uNK cells to trophoblast HLA-C molecules is unknown. In this study, we show by quantitative RT-PCR and FACS that both activating and inhibitory KIR specific for HLA-C are expressed at higher levels and on an increased proportion of NK cells in the human decidua compared with blood. In contrast, expression of KIR3DL1/S1, which is specific for HLA-B, is similar in both NK cell populations. Remarkably, there is also a temporal change in the expression pattern of HLA-C-specific KIR, with a decline in both intensity of expression and frequency on uNK cells throughout the first trimester of pregnancy. This selective up-regulation of KIR has functional consequences because uNK cells show increased binding of HLA-C tetramers compared with blood NK cells. Ab cross-linking shows that these KIR are functional and results in increased cytokine secretion. uNK cells, therefore, exhibit a unique KIR profile that enhances their ability to recognize trophoblast cells expressing HLA-C at the materno-fetal interface. This is the first report to demonstrate selective regulation of KIR expression over time in vivo in a normal physiological situation and suggests that KIR expression by uNK cells is regulated by the tissue microenvironment in the decidua.  相似文献   

17.
CD4(+) T cells produce IFN-gamma contributing to corneal perforation in C57BL/6 (B6) mice after Pseudomonas aeruginosa infection. To determine the role of NK and NKT cells, infected corneas of B6 mice were dual immunolabeled. Initially, more NKT than NK cells were detected, but as disease progressed, NK cells increased, while NKT cells decreased. Therefore, B6 mice were depleted of NK/NKT cells with anti-asialo GM1 or anti-NK1.1 Ab. Either treatment accelerated time to perforation, increased bacterial load and polymorphonuclear neutrophils, but decreased IFN-gamma and IL-12p40 mRNA expression vs controls. Next, RAG-1 knockout (-/-; no T/NKT cells), B6.TCR Jalpha281(-/-) (NKT cell deficient), alpha-galactosylceramide (alphaGalCer) (anergized NKT cells) injected and IL-12p40(-/-) vs B6 controls were tested. IFN-gamma mRNA was undetectable in RAG-1(-/-)- and alphaGalCer-treated mice at 5 h and was significantly reduced vs controls at 1 day postinfection. It also was reduced significantly in B6.TCR Jalpha281(-/-), alphaGalCer-treated, and IL-12p40(-/-) (activated CD4(+) T cells also reduced) vs control mice at 5 days postinfection. In vitro studies tested whether endotoxin (LPS) stimulated Langerhans cells and macrophages (Mphi; from B6 mice) provided signals to activate NKT cells. LPS up-regulated mRNA expression for IL-12p40, costimulatory molecules CD80 and CD86, NF-kappaB, and CD1d, and addition of rIFN-gamma potentiated Mphi CD1d levels. Together, these data suggest that Langerhans cell/Mphi recognition of microbial LPS regulates IL-12p40 (and CD1d) driven IFN-gamma production by NKT cells, that IFN-gamma is required to optimally activate NK cells to produce IFN-gamma, and that depletion of both NKT/NK cells results in earlier corneal perforation.  相似文献   

18.
Previously, we reported that IL-10-producing mononuclear phagocytes increase in lungs of aged mice, causing impaired innate cytokine expression. Since dendritic cells (DCs) contribute to innate NK cell and adaptive T cell immunity, we tested the hypothesis that age-related IL-10 might influence DC function with effects on NK and T cell activation. The results showed that DC recruitment to sites of lung inflammation was normal in aged mice (>20 mo). However, IFN-gamma-producing NK cells in LPS-challenged lungs were decreased in aged as compared with young mice, which was associated with increased IL-10(+)CD11b(+)Gr-1(low)CD11c(-) cells consistent with mononuclear phagocytes. In vivo or in vitro blockade of IL-10 signaling restored IFN-gamma-producing NK cells. This restoration was reversed by IL-12 neutralization, indicating that IL-10 suppressed sources of IL-12 in aged mice. To probe DC function in adaptive immunity, we transferred young naive OVA-specific TCR transgenic T cells to old mice. Following challenge with OVA plus LPS, Ag presentation in the context of MHC-I and MHC-II occurred with similar kinetics and intensity in draining lymph nodes of young and old recipients as measured by proliferation. Despite this, aged hosts displayed impaired induction of IFN-gamma(+)CD4(+), but not IFN-gamma(+)CD8(+), effector T cells. Blockade of IL-10 signaling reversed age-associated defects. These studies indicate that the innate IL-12/IFN-gamma axis is not intrinsically defective in lungs of aged mice, but is rather suppressed by enhanced production of mononuclear phagocyte-derived IL-10. Our data identify a novel mechanism of age-associated immune deficiency.  相似文献   

19.
In this report, we examined the involvement of the cytokines tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-4, and IL-10 as well as nitric oxide (NO) in the lipopolysaccharide (LPS)-induced experimental abortion model in BALB/c mice. Although in vivo administration of LPS in pregnant mice showed a 72% decrease of serum IL-10, no significant difference in serum TNF-alpha, IFN-gamma, and IL-4 levels, compared to controls, could be detected. At the same time, a correlation of fetal abortion and maternal splenomegaly with an important increase of NO synthesis in the serum was obtained. Simultaneous administration of LPS and aminoguanidine (AG; an inhibitor to NO synthase) rescued the LPS-induced fetal abortion, reduced maternal spleen weight to physiological levels, and decreased serum NO concentration to control levels. In vitro experiments showed that LPS directly induced NO production in primary placental cells and the TPOPHO-1 trophoblast cell line by stimulating the inducible isoform of NO synthase, which ultimately could be blocked by the NO synthase inhibitors AG and L-NAME. The results indicate that LPS, despite its beneficial involvement in intracellular infections, participates in inflammatory/autoimmune damage during pregnancy, leading to embryotoxicity, which is closely linked to the NO pathway.  相似文献   

20.
IL-10 is anti-inflammatory cytokine that is involved in the regulation of the pregnancy process. We examined the capacity of fetal and maternal placental tissues from human term placentas, to produce IL-10, in the presence and absence of LPS. The levels of IL-10 were examined (by ELISA and immunohistochemical staining) in the fetal and maternal tissues of human placentas after 10 hours of perfusion, in the presence or absence of lipopolysaccharide (LPS; 1 microg/k"g perfused tissue). We could detect IL-10 in amnion (A; 13.91+/-11.35 pg/ml) and chorion (CH; 7.85 +/- 6.38 pg/ml) tissue homogenates, and in the homogenates of three different sites of the placental tissue compartment (subchorionic placenta (SubCH); 7.39 +/- 4.39 pg/ml, mid-placenta (MidPL); 8.9 +/- 4.73 pg/ml and decidua (Decid); 16.48 + 11.86 pg/ml). Immunohistochemical studies showed that IL-10 was localized in the epithelial cells of the amnion, and in the fibroblasts and macrophages of the chorion. In the placenta and mid-placental sites, IL-10 is localized mainly in cytotrophoblasts and syncytotrophoblasts. The presence of LPS in the perfusion media of the placentas for 10 hours, did not significantly affect the capacity of the fetal and maternal tissues to produce IL-10. Thus, our results may indicate the involvement of the fetal compartment in the down-regulation of the cell-mediated response of the maternal compartment against the fetus, by producing IL-10 under physiological conditions. Infection/inflammation agents such as LPS did not affect the expression levels of IL-10 in the placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号