首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang R  Gao H  Wang X  Zhang J  Zeng ZB  Wu R 《Genetics》2007,177(3):1859-1870
Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age.  相似文献   

2.
The dynamic pattern of viral load in a patient’s body critically depends on the host’s genes. For this reason, the identification of those genes responsible for virus dynamics, although difficult, is of fundamental importance to design an optimal drug therapy based on patients’ genetic makeup. Here, we present a differential equation (DE) model for characterizing specific genes or quantitative trait loci (QTLs) that affect viral load trajectories within the framework of a dynamic system. The model is formulated with the principle of functional mapping, originally derived to map dynamic QTLs, and implemented with a Markov chain process. The DE-integrated model enhances the mathematical robustness of functional mapping, its quantitative prediction about the temporal pattern of genetic expression, and therefore its practical utilization and effectiveness for gene discovery in clinical settings. The model was used to analyze simulated data for viral dynamics, aimed to investigate its statistical properties and validate its usefulness. With an increasing availability of genetic polymorphic data, the model will have great implications for probing the molecular genetic mechanism of virus dynamics and disease progression.  相似文献   

3.
Zhao W  Li H  Hou W  Wu R 《Genetics》2007,176(3):1879-1892
The biological and statistical advantages of functional mapping result from joint modeling of the mean-covariance structures for developmental trajectories of a complex trait measured at a series of time points. While an increased number of time points can better describe the dynamic pattern of trait development, significant difficulties in performing functional mapping arise from prohibitive computational times required as well as from modeling the structure of a high-dimensional covariance matrix. In this article, we develop a statistical model for functional mapping of quantitative trait loci (QTL) that govern the developmental process of a quantitative trait on the basis of wavelet dimension reduction. By breaking an original signal down into a spectrum by taking its averages (smooth coefficients) and differences (detail coefficients), we used the discrete Haar wavelet shrinkage technique to transform an inherently high-dimensional biological problem into its tractable low-dimensional representation within the framework of functional mapping constructed by a Gaussian mixture model. Unlike conventional nonparametric modeling of wavelet shrinkage, we incorporate mathematical aspects of developmental trajectories into the smooth coefficients used for QTL mapping, thus preserving the biological relevance of functional mapping in formulating a number of hypothesis tests at the interplay between gene actions/interactions and developmental patterns for complex phenotypes. This wavelet-based parametric functional mapping has been statistically examined and compared with full-dimensional functional mapping through simulation studies. It holds great promise as a powerful statistical tool to unravel the genetic machinery of developmental trajectories with large-scale high-dimensional data.  相似文献   

4.
Hou W  Li H  Zhang B  Huang M  Wu R 《Heredity》2008,101(4):321-328
Functional mapping has emerged as a next-generation statistical tool for mapping quantitative trait loci (QTL) that affect complex dynamic traits. In this article, we incorporated the idea of nonlinear mixed-effect (NLME) models into the mixture-based framework of functional mapping, aimed to generalize the spectrum of applications for functional mapping. NLME-based functional mapping, implemented with the linearization algorithm based on the first-order Taylor expansion, can provide reasonable estimates of QTL genotypic-specific curve parameters (fixed effect) and the between-individual variation of these parameters (random effect). Results from simulation studies suggest that the NLME-based model is more general than traditional functional mapping. The new model can be useful for the identification of the ontogenetic patterns of QTL genetic effects during time course.  相似文献   

5.
The volumetric growth of tumor cells as a function of time is most often likely to be a complex trait, controlled by the combined influences of multiple genes and environmental influences. Genetic mapping has proven to be a powerful tool for detecting and identifying specific genes affecting complex traits, i.e., quantitative trait loci (QTL), based on polymorphic markers. In this article, we present a novel statistical model for genetic mapping of QTL governing tumor growth trajectories in humans. In principle, this model is a combination of functional mapping proposed to map function-valued traits and linkage disequilibrium mapping designed to provide high resolution mapping of QTL by making use of recombination events created at a historic time. We implement an EM-simplex hybrid algorithm for parameter estimation, in which a closed-form solution for the EM algorithm is derived to estimate the population genetic parameters of QTL including the allele frequencies and the coefficient of linkage disequilibrium, and the simplex algorithm incorporated to estimate the curve parameters describing the dynamic changes of cancer cells for different QTL genotypes. Extensive simulations are performed to investigate the statistical properties of our model. Through a number of hypothesis tests, our model allows for cutting-edge studies aimed to decipher the genetic mechanisms underlying cancer growth, development and differentiation. The implications of our model in gene therapy for cancer research are discussed.  相似文献   

6.
Yang J  Wu R  Casella G 《Biometrics》2009,65(1):30-39
Summary .  Functional mapping is a useful tool for mapping quantitative trait loci (QTL) that control dynamic traits. It incorporates mathematical aspects of biological processes into the mixture model-based likelihood setting for QTL mapping, thus increasing the power of QTL detection and the precision of parameter estimation. However, in many situations there is no obvious functional form and, in such cases, this strategy will not be optimal. Here we propose to use nonparametric function estimation, typically implemented with B-splines, to estimate the underlying functional form of phenotypic trajectories, and then construct a nonparametric test to find evidence of existing QTL. Using the representation of a nonparametric regression as a mixed model, the final test statistic is a likelihood ratio test. We consider two types of genetic maps: dense maps and general maps, and the power of nonparametric functional mapping is investigated through simulation studies and demonstrated by examples.  相似文献   

7.
Zhao W  Zhu J  Gallo-Meagher M  Wu R 《Genetics》2004,168(3):1751-1762
The effects of quantitative trait loci (QTL) on phenotypic development may depend on the environment (QTL x environment interaction), other QTL (genetic epistasis), or both. In this article, we present a new statistical model for characterizing specific QTL that display environment-dependent genetic expressions and genotype x environment interactions for developmental trajectories. Our model was derived within the maximum-likelihood-based mixture model framework, incorporated by biologically meaningful growth equations and environment-dependent genetic effects of QTL, and implemented with the EM algorithm. With this model, we can characterize the dynamic patterns of genetic effects of QTL governing growth curves and estimate the global effect of the underlying QTL during the course of growth and development. In a real example with rice, our model has successfully detected several QTL that produce differences in their genetic expression between two contrasting environments. These detected QTL cause significant genotype x environment interactions for some fundamental aspects of growth trajectories. The model provides the basis for deciphering the genetic architecture of trait expression adjusted to different biotic and abiotic environments and genetic relationships for growth rates and the timing of life-history events for any organism.  相似文献   

8.
A non-stationary model for functional mapping of complex traits   总被引:3,自引:0,他引:3  
SUMMARY: Understanding the genetic control of growth is fundamental to agricultural, evolutionary and biomedical genetic research. In this article, we present a statistical model for mapping quantitative trait loci (QTL) that are responsible for genetic differences in growth trajectories during ontogenetic development. This model is derived within the maximum likelihood context, implemented with the expectation-maximization algorithm. We incorporate mathematical aspects of growth processes to model the mean vector and structured antedependence models to approximate time-dependent covariance matrices for longitudinal traits. Our model has been employed to map QTL that affect body mass growth trajectories in both male and female mice of an F2 population derived from the Large and Small mouse strains. The results from this model are compared with those from the autoregressive-based functional mapping approach. Based on results from computer simulation studies, we suggest that these two models are alternative to one another and should be used simultaneously for the same dataset.  相似文献   

9.
Wu R  Ma CX  Lin M  Wang Z  Casella G 《Biometrics》2004,60(3):729-738
The incorporation of developmental control mechanisms of growth has proven to be a powerful tool in mapping quantitative trait loci (QTL) underlying growth trajectories. A theoretical framework for implementing a QTL mapping strategy with growth laws has been established. This framework can be generalized to an arbitrary number of time points, where growth is measured, and becomes computationally more tractable, when the assumption of variance stationarity is made. In practice, however, this assumption is likely to be violated for age-specific growth traits due to a scale effect. In this article, we present a new statistical model for mapping growth QTL, which also addresses the problem of variance stationarity, by using a transform-both-sides (TBS) model advocated by Carroll and Ruppert (1984, Journal of the American Statistical Association 79, 321-328). The TBS-based model for mapping growth QTL cannot only maintain the original biological properties of a growth model, but also can increase the accuracy and precision of parameter estimation and the power to detect a QTL responsible for growth differentiation. Using the TBS-based model, we successfully map a QTL governing growth trajectories to a linkage group in an example of forest trees. The statistical and biological properties of the estimates of this growth QTL position and effect are investigated using Monte Carlo simulation studies. The implications of our model for understanding the genetic architecture of growth are discussed.  相似文献   

10.
Without consideration of other linked QTLs responsible for dynamic trait, original functional mapping based on a single QTL model is not optimal for analyzing multiple dynamic trait loci. Despite that composite functional mapping incorporates the effects of genetic background outside the tested QTL in mapping model, the arbitrary choice of background markers also impact on the power of QTL detection. In this study, we proposed Bayesian functional mapping strategy that can simultaneously identify multiple QTL controlling developmental patterns of dynamic traits over the genome. Our proposed method fits the change of each QTL effect with the time by Legendre polynomial and takes the residual covariance structure into account using the first autoregressive equation. Also, Bayesian shrinkage estimation was employed to estimate the model parameters. Especially, we specify the gamma distribution as the prior for the first-order auto-regressive coefficient, which will guarantee the convergence of Bayesian sampling. Simulations showed that the proposed method could accurately estimate the QTL parameters and had a greater statistical power of QTL detection than the composite functional mapping. A real data analysis of leaf age growth in rice is used for the demonstration of our method. It shows that our Bayesian functional mapping can detect more QTLs as compared to composite functional mapping.  相似文献   

11.
Ma CX  Casella G  Wu R 《Genetics》2002,161(4):1751-1762
Unlike a character measured at a finite set of landmark points, function-valued traits are those that change as a function of some independent and continuous variable. These traits, also called infinite-dimensional characters, can be described as the character process and include a number of biologically, economically, or biomedically important features, such as growth trajectories, allometric scalings, and norms of reaction. Here we present a new statistical infrastructure for mapping quantitative trait loci (QTL) underlying the character process. This strategy, termed functional mapping, integrates mathematical relationships of different traits or variables within the genetic mapping framework. Logistic mapping proposed in this article can be viewed as an example of functional mapping. Logistic mapping is based on a universal biological law that for each and every living organism growth over time follows an exponential growth curve (e.g., logistic or S-shaped). A maximum-likelihood approach based on a logistic-mixture model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL effects, and other model parameters responsible for growth trajectories. Logistic mapping displays a tremendous potential to increase the power of QTL detection, the precision of parameter estimation, and the resolution of QTL localization due to the small number of parameters to be estimated, the pleiotropic effect of a QTL on growth, and/or residual correlations of growth at different ages. More importantly, logistic mapping allows for testing numerous biologically important hypotheses concerning the genetic basis of quantitative variation, thus gaining an insight into the critical role of development in shaping plant and animal evolution and domestication. The power of logistic mapping is demonstrated by an example of a forest tree, in which one QTL affecting stem growth processes is detected on a linkage group using our method, whereas it cannot be detected using current methods. The advantages of functional mapping are also discussed.  相似文献   

12.
Four-way crosses (4WC) involving four different inbred lines often appear in plant and animal commercial breeding programs. Direct mapping of quantitative trait loci (QTL) in these commercial populations is both economical and practical. However, the existing statistical methods for mapping QTL in a 4WC population are built on the single-QTL genetic model. This simple genetic model fails to take into account QTL interactions, which play an important role in the genetic architecture of complex traits. In this paper, therefore, we attempted to develop a statistical method to detect epistatic QTL in 4WC population. Conditional probabilities of QTL genotypes, computed by the multi-point single locus method, were used to sample the genotypes of all putative QTL in the entire genome. The sampled genotypes were used to construct the design matrix for QTL effects. All QTL effects, including main and epistatic effects, were simultaneously estimated by the penalized maximum likelihood method. The proposed method was confirmed by a series of Monte Carlo simulation studies and real data analysis of cotton. The new method will provide novel tools for the genetic dissection of complex traits, construction of QTL networks, and analysis of heterosis.  相似文献   

13.

Background

Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL) mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology.

Results

Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight.

Conclusion

The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.  相似文献   

14.
ABSTRACT: BACKGROUND: Although many experiments have measurements on multiple traits, most studies performed the analysis of mapping of quantitative trait loci (QTL) for each trait separately using single trait analysis. Single trait analysis does not take advantage of possible genetic and environmental correlations between traits. In this paper, we propose a novel statistical method for multiple trait multiple interval mapping (MTMIM) of QTL for inbred line crosses. We also develop a novel score-based method for estimating genome-wide significance level of putative QTL effects suitable for the MTMIM model. The MTMIM method is implemented in the freely available and widely used Windows QTL Cartographer software. RESULTS: Throughout the paper, we provide compelling empirical evidences that: (1) the score-based threshold maintains proper type I error rate and tends to keep false discovery rate within an acceptable level; (2) the MTMIM method can deliver better parameter estimates and power than single trait multiple interval mapping method; (3) an analysis of Drosophila dataset illustrates how the MTMIM method can better extract information from datasets with measurements in multiple traits. CONCLUSIONS: The MTMIM method represents a convenient statistical framework to test hypotheses of pleiotropic QTL versus closely linked nonpleiotropic QTL, QTL by environment interaction, and to estimate the total genotypic variance-covariance matrix between traits and to decompose it in terms of QTL-specific variance-covariance matrices, therefore, providing more details on the genetic architecture of complex traits.  相似文献   

15.
Understanding how an organism develops into a fully functioning adult from a mass of undifferentiated cells may reveal different strategies that allow the organism to survive under limiting conditions. Here, we review an analytical model for characterizing quantitative trait loci (QTLs) that underlie variation in growth trajectories and developmental timing. This model, called functional mapping, incorporates fundamental principles behind biological processes or networks that are bridged with mathematical functions into a statistical mapping framework. Functional mapping estimates parameters that determine the shape and function of a particular biological process, thus providing a flexible platform to test biologically meaningful hypotheses regarding the complex relationships between gene action and development.  相似文献   

16.
远交群体动态性状基因定位的似然分析Ⅰ.理论方法   总被引:3,自引:0,他引:3  
杨润清  高会江  孙华  Shizhong Xu 《遗传学报》2004,31(10):1116-1122
受动物遗传育种中用来估计动态性状育种值的随机回归测定日模型思想的启发 ,将关于时间 (测定日期 )的Legendre多项式镶嵌在遗传模型的每个遗传效应中 ,以刻画QTL对动态性状变化过程的作用 ,从而建立起动态性状基因定位的数学模型。利用远交设计群体 ,阐述了动态性状基因定位的似然分析原理 ,推导了定位参数似然估计的EM法两步求解过程。结合动态性状遗传分析的特点和普通数量性状基因定位研究进展 ,还提出了有关动态性状基因定位进一步研究的设想  相似文献   

17.
Wu R  Ma CX  Casella G 《Genetics》2002,160(2):779-792
Linkage analysis and allelic association (also referred to as linkage disequilibrium) studies are two major approaches for mapping genes that control simple or complex traits in plants, animals, and humans. But these two approaches have limited utility when used alone, because they use only part of the information that is available for a mapping population. More recently, a new mapping strategy has been designed to integrate the advantages of linkage analysis and linkage disequilibrium analysis for genome mapping in outcrossing populations. The new strategy makes use of a random sample from a panmictic population and the open-pollinated progeny of the sample. In this article, we extend the new strategy to map quantitative trait loci (QTL), using molecular markers within the EM-implemented maximum-likelihood framework. The most significant advantage of this extension is that both linkage and linkage disequilibrium between a marker and QTL can be estimated simultaneously, thus increasing the efficiency and effectiveness of genome mapping for recalcitrant outcrossing species. Simulation studies are performed to test the statistical properties of the MLEs of genetic and genomic parameters including QTL allele frequency, QTL effects, QTL position, and the linkage disequilibrium of the QTL and a marker. The potential utility of our mapping strategy is discussed.  相似文献   

18.
MOTIVATION: Functional mapping that embeds the developmental mechanisms of complex traits shows great power to study the dynamic pattern of genetic effects triggered by individual quantitative trait loci (QTLs). A full-sib family, produced by crossing two heterozygous parents, is characteristic of uncertainties about cross-type at a locus and linkage phase between different loci. Integrating functional mapping into a full-sib family requires a model selection procedure capable of addressing these uncertainties. 3FunMap, written in VC++ 6.0, provides a flexible and extensible platform to perform full-sib functional mapping of dynamic traits. Functions in the package encompass linkage phase determination, marker map construction and the pattern identification of QTL segregation, dynamic tests of QTL effects, permutation tests and numerical simulation. We demonstrate the features of 3FunMap through real data analysis and computer simulation. AVAILABILITY: http://statgen.psu.edu/software.  相似文献   

19.
Many biological processes, from cellular metabolism to population dynamics, are characterized by particular allometric scaling (power-law) relationships between size and rate. Although such allometric relationships may be under genetic determination, their precise genetic mechanisms have not been clearly understood due to a lack of a statistical analytical method. In this paper, we present a basic statistical framework for mapping quantitative genes (or quantitative trait loci, QTL) responsible for universal quarter-power scaling laws of organic structure and function with the entire body size. Our model framework allows the testing of whether a single QTL affects the allometric relationship of two traits or whether more than one linked QTL is segregating. Like traditional multi-trait mapping, this new model can increase the power to detect the underlying QTL and the precision of its localization on the genome. Beyond the traditional method, this model is integrated with pervasive scaling laws to take advantage of the mechanistic relationships of biological structures and processes. Simulation studies indicate that the estimation precision of the QTL position and effect can be improved when the scaling relationship of the two traits is considered. The application of our model in a real example from forest trees leads to successful detection of a QTL governing the allometric relationship of third-year stem height with third-year stem biomass. The model proposed here has implications for genetic, evolutionary, biomedicinal and breeding research.  相似文献   

20.
The progression of HIV disease has been markedly slowed by the use of highly active antiretroviral therapy (HAART). However, substantial genetic variation was observed to occur among different people in the decay rate of viral loads caused by HAART. The characterization of specific genes involved in HIV dynamics is central to design personalized drugs for the prevention of this disease, but usually cannot be addressed by experimental methods alone rather than require the help of mathematical and statistical methods. A novel statistical model has been recently developed to detect genetic variants that are responsible for the shape of HAART-induced viral decay curves. This model was employed to an HIV/AIDS trial, which led to the identification of a major genetic determinant that triggers an effect on HIV dynamics. This detected major genetic determinant also affects several clinically important parameters, such as half-lives of infected cells and HIV eradication times.Key Words: Hardy-weinberg equilibrium, bi-exponential function, quantitative trait loci, HIV dynamics, functional mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号