首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the key features associated with programmed cell death in many tissues is the phagocytosis of apoptotic bodies by macrophages. Removal of apoptotic cells occurs before their lysis, indicating that these cells, during the development of apoptosis, express specific surface changes recognized by macrophages. We have compared the mechanisms by which four different macrophage populations recognize apoptotic cells. Murine macrophages elicited into the peritoneal cavity with either of two different phlogistic agents were able to phagocytose apoptotic cells. This phagocytosis was inhibited by phosphatidylserine (PS), regardless of the species (human or murine) or type (lymphocyte or neutrophil) of the apoptotic cell. In contrast, the murine bone marrow macrophage, like the human monocyte-derived macrophage, utilized the vitronectin receptor, an alpha v beta 3 integrin, for the removal of apoptotic cells, regardless of their species or type. That human macrophages are capable, under some circumstances, of recognizing PS on apoptotic cells was suggested by the observation that PS liposomes inhibited phagocytosis by phorbol ester-treated THP-1 cells. These results suggest that the mechanism by which apoptotic cells are recognized and phagocytosed by macrophages is determined by the subpopulation of macrophages studied.  相似文献   

2.
Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes   总被引:6,自引:0,他引:6  
Phagocyte recognition, uptake, and nonphlogistic degradation of neutrophils and other leukocytes undergoing apoptosis promote the resolution of inflammation. This study assessed the effects of anti-inflammatory glucocorticoids on this leukocyte clearance mechanism. Pretreatment of "semimature" 5-day human monocyte-derived macrophages (M phi) for 24 h with methylprednisolone, dexamethasone, and hydrocortisone, but not the nonglucocorticoid steroids aldosterone, estradiol, and progesterone, potentiated phagocytosis of apoptotic neutrophils. These effects were specific in that the potentiated phagocytosis of apoptotic neutrophils was completely blocked by the glucocorticoid receptor antagonist RU38486, and glucocorticoids did not promote 5-day M phi ingestion of opsonized erythrocytes. Similar glucocorticoid-mediated potentiation was observed with 5-day M phi uptake of alternative apoptotic "targets" (eosinophils and Jurkat T cells) and in uptake of apoptotic neutrophils by alternative phagocytes (human glomerular mesangial cells and murine M phi elicited into the peritoneum or derived from bone marrow). Importantly, methylprednisolone-mediated enhancement of the uptake of apoptotic neutrophils did not trigger the release of the chemokines IL-8 and monocyte chemoattractant protein-1. Furthermore, longer-term potentiation by methylprednisolone was observed in maturing human monocyte-derived M phi, with greater increases in 5-day M phi uptake of apoptotic cells being observed the earlier glucocorticoids were added during monocyte maturation into M phi. We conclude that potentiation of nonphlogistic clearance of apoptotic leukocytes by phagocytes is a hitherto unrecognized property of glucocorticoids that has potential implications for therapies aimed at promoting the resolution of inflammatory diseases.  相似文献   

3.
Clearance of apoptotic neutrophils by macrophages is important for both the successful resolution of acute inflammation and homeostasis.However,the dynamic process of phagocytosis of apoptotic neutrophils by macrophages and the fate of macrophages after the ingestion of apoptotic neutrophils has not been well documented.In the present study,we staged the recognition and tethering,internalization,digestion and exocytosis steps of phagocytosis of apoptotic neutrophils.Furthermore,we found that after the ingestion of apoptotic cells,a subset of macrophages underwent cell death by autophagy,apoptosis or oncosis as revealed by transmission electron microscopy and confocal microscopy combined with specific dyes.The percentage of autophagic,apoptotic and oncotic macrophages were 8.00%±2.00%,12.33%±2.08%,and 3.66%±1.50%,respectively.These results indicated that after ingestion of apoptotic neutrophils,a subset of macrophages undergoes autophagy and apoptosis.We propose that autophagy of macrophages after the ingestion of apoptotic cells may be a new mechanism present in the resolution of inflammation.  相似文献   

4.
Apoptotic cells express eat-me signals which are recognized by several receptors mainly on professional phagocytes of the mononuclear phagocyte system. This “engulfment synapse” can define a safe and effective clearance of apoptotic cells in order to maintain tissue homeostasis in the entire body. We show that the expression of four genes related to apoptotic cell clearance is strongly up-regulated in human macrophages 30 min after administration of apoptotic neutrophils. Out of these the significant role of the up-regulated intercellular adhesion molecule 3 (ICAM3) in phagocytosis of apoptotic neutrophils could be demonstrated in macrophages by gene silencing as well as treatment with blocking antibodies. Blocking ICAM3 on the surface of apoptotic neutrophils also resulted in their decreased uptake which confirmed its role as an eat-me signal expressed by apoptotic cells. In macrophages but not in neutrophils silencing and blocking integrin alphaL and beta2 components of lymphocyte function-associated antigen 1 (LFA-1), which can strongly bind ICAM3, resulted in a decreased phagocytosis of apoptotic cells indicating its possible role to recognize ICAM3 on the surface of apoptotic neutrophils. Finally, we report that engulfing portals formed in macrophages during phagocytosis are characterized by accumulation of ICAM3, integrin alphaL and beta2 which show co-localization on the surface of phagocytes. Furthermore, their simultaneous knock-down in macrophages resulted in a marked deficiency in phagocytosis and a slight decrease in the anti-inflammatory effect of apoptotic neutrophils. We propose that ICAM3 and LFA-1 act as recognition receptors in the phagocytosis portals of macrophages for engulfment of apoptotic neutrophils.  相似文献   

5.
In vivo, apoptotic cells are removed by surrounding phagocytes, a process thought to be essential for tissue remodeling and the resolution of inflammation [1]. Although apoptotic cells are known to be efficiently phagocytosed by macrophages, the mechanisms whereby their interaction with the phagocytes triggers their engulfment have not been described in mammals. Here, we report that primary murine bone marrow-derived macrophages (using alpha(v)beta(3) integrin for apoptotic cell uptake) extend lamellipodia to engulf apoptotic cells and form an actin cup where phosphotyrosine accumulates. Rho GTPases and PI 3-kinases have been widely implicated in the regulation of the actin cytoskeleton [2, 3]. We show that inhibition of Rho GTPases by Clostridium difficile toxin B prevents apoptotic cell phagocytosis and inhibits the accumulation of both F-actin and phosphotyrosine. Importantly, the Rho GTPases Rac1 and Cdc42 are required for apoptotic cell uptake whereas Rho inhibition enhances uptake. The PI 3-kinase inhibitor LY294002 also prevents apoptotic cell phagocytosis but has no effect on the accumulation of F actin and phosphotyrosine. These results indicate that both Rho GTPases and PI 3-kinases are involved in apoptotic cell phagocytosis but that they play distinct roles in this process.  相似文献   

6.
Macrophage recognition of ICAM-3 on apoptotic leukocytes.   总被引:1,自引:0,他引:1  
Cells undergoing apoptosis are cleared rapidly by phagocytes, thus preventing tissue damage caused by loss of plasma membrane integrity. In this study, we show that the surface of leukocytes is altered during apoptosis such that the first Ig-like domain of ICAM-3 (CD50) can participate in the recognition and phagocytosis of the apoptotic cells by macrophages. Macrophage recognition of apoptotic cell-associated ICAM-3 was demonstrated both on leukocytes and, following transfection of exogenous ICAM-3, on nonleukocytes. The change in ICAM-3 was a consistent consequence of apoptosis triggered by various stimuli, suggesting that it occurs as part of a final common pathway of apoptosis. Alteration of ICAM-3 on apoptotic cells permitting recognition by macrophages resulted in a switch in ICAM-3-binding preference from the prototypic ICAM-3 counterreceptor, LFA-1, to an alternative macrophage receptor. Using mAbs to block macrophage/apoptotic cell interactions, we were unable to obtain evidence that either the alternative ICAM-3 counterreceptor alpha d beta 2 or the apoptotic cell receptor alpha v beta 3 was involved in the recognition of ICAM-3. By contrast, mAb blockade of macrophage CD14 inhibited ICAM-3-dependent recognition of apoptotic cells. These results show that ICAM-3 can function as a phagocytic marker of apoptotic leukocytes on which it acquires altered macrophage receptor-binding activity.  相似文献   

7.
In addition to direct bactericidal activities, such as phagocytosis and generation of reactive oxygen species (ROS), neutrophils can regulate the inflammatory response by undergoing apoptosis. We found that infection of human neutrophils with Mycobacterium tuberculosis (Mtb) induced rapid cell death displaying the characteristic features of apoptosis such as morphologic changes, phosphatidylserine exposure, and DNA fragmentation. Both a virulent (H37Rv) and an attenuated (H37Ra) strain of Mtb were equally effective in inducing apoptosis. Pretreatment of neutrophils with antioxidants or an inhibitor of NADPH oxidase markedly blocked Mtb-induced apoptosis but did not affect spontaneous apoptosis. Activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis, but it was markedly augmented and accelerated during Mtb-induced apoptosis. The Mtb-induced apoptosis was associated with a speedy and transient increase in expression of Bax protein, a proapoptotic member of the Bcl-2 family, and a more prominent reduction in expression of the antiapoptotic protein Bcl-x(L). Pretreatment with an inhibitor of NADPH oxidase distinctly suppressed the Mtb-stimulated activation of caspase-3 and alteration of Bax/Bcl-x(L) expression in neutrophils. These results indicate that infection with Mtb causes ROS-dependent alteration of Bax/Bcl-x(L) expression and activation of caspase-3, and thereby induces apoptosis in human neutrophils. Moreover, we found that phagocytosis of Mtb-induced apoptotic neutrophils markedly increased the production of proinflammatory cytokine TNF-alpha by human macrophages. Therefore, the ROS-dependent apoptosis in Mtb-stimulated neutrophils may represent an important host defense mechanism aimed at selective removal of infected cells at the inflamed site, which in turn aids the functional activities of local macrophages.  相似文献   

8.
Cell/matrix detachment is a general inducer of programmed cell death, an event mediated by loss of integrin/ligand association. Because alpha(v)beta3 is the major integrin expressed by the osteoclast, we asked whether its occupancy promotes survival of the resorptive cell. Thus, we generated wild-type preosteoclasts and placed them on selective matrix proteins. Consistent with the posture that alpha(v)beta3 occupancy promotes survival, preosteoclasts plated on native collagen, a matrix not recognized by the integrin, undergo apoptosis 4-fold faster than those on the alpha(v)beta3 ligand, vitronectin. To further explore the role of alpha(v)beta3 in osteoclast apoptosis, wild-type and beta3-/- preosteoclasts were suspended and apoptosis determined, with time. Beta3-/- preosteoclasts, in suspension, undergo a rate of apoptosis only 40-60% of that of their wild-type counterparts, indicating that unoccupied alpha(v)beta3 transmits a positive death signal that we find regulated by caspase-8. Attesting to specificity of the unoccupied integrin-transmitted death signal, apoptosis in the absence of alpha(v)beta3 is mediated by capsase-9. We have shown that the resorptive defect of beta3-/- osteoclasts is rescued by wild-type beta3 cDNA but not by one bearing a S752P mutation. To determine whether the same holds true regarding osteoclast apoptosis, we constructed lentivirus vectors encoding green fluorescent protein, wild-type beta3, or beta3S752P. Once again, native beta3-/- preosteoclasts were protected against apoptosis. Similar to its effect on bone resorption, transduced wild-type beta3 normalizes the apoptotic rate of beta3-/- preosteoclasts. Unexpectedly, however, beta3S752P transductants also die at a rate indistinguishable from wild type. Thus, unoccupied alpha(v)beta3 integrin regulates osteoclast apoptosis via a component of the integrin that is different than that regulating resorption.  相似文献   

9.
Reactive alpha,beta-unsaturated aldehydes are major components of common environmental pollutants and are products of lipid oxidation. Although these aldehydes have been demonstrated to induce apoptotic cell death in various cell types, we recently observed that the alpha,beta-unsaturated aldehyde acrolein (ACR) can inhibit constitutive apoptosis of polymorphonuclear neutrophils and thus potentially contribute to chronic inflammation. The present study was designed to investigate the biochemical mechanisms by which two representative alpha,beta-unsaturated aldehydes, ACR and 4-hydroxynonenal (HNE), regulate neutrophil apoptosis. Whereas low concentrations of either aldehyde (<10 microM) mildly promoted apoptosis in neutrophils (reflected by increased phosphatidylserine exposure, caspase-3 activation, and mitochondrial cytochrome c release), higher concentrations prevented critical features of apoptosis (caspase-3 activation, phosphatidylserine exposure) and caused delayed neutrophil cell death with characteristics of necrosis/oncosis. Inhibition of caspase-3 activation by either aldehyde occurred despite increases in mitochondrial cytochrome c release and occurred in close association with depletion of cellular GSH and with cysteine modifications within caspase-3. However, procaspase-3 processing was also prevented, because of inhibited activation of caspases-9 and -8 under similar conditions, suggesting that ACR (and to a lesser extent HNE) can inhibit both intrinsic (mitochondria dependent) and extrinsic mechanisms of neutrophil apoptosis at initial stages. Collectively, our results indicate that alpha,beta-unsaturated aldehydes can inhibit constitutive neutrophil apoptosis by common mechanisms, involving changes in cellular GSH status resulting in reduced activation of initiator caspases as well as inactivation of caspase-3 by modification of its critical cysteine residue.  相似文献   

10.
Proteinase 3 (PR3) is the target of anti-neutrophil cytoplasm Abs in granulomatosis with polyangiitis, a form of systemic vasculitis. Upon neutrophil apoptosis, PR3 is coexternalized with phosphatidylserine and impaired macrophage phagocytosis. Calreticulin (CRT), a protein involved in apoptotic cell recognition, was found to be a new PR3 partner coexpressed with PR3 on the neutrophil plasma membrane during apoptosis, but not after degranulation. The association between PR3 and CRT was demonstrated in neutrophils by confocal microscopy and coimmunoprecipitation. Evidence for a direct interaction between PR3 and the globular domain of CRT, but not with its P domain, was provided by surface plasmon resonance spectroscopy. Phagocytosis of apoptotic neutrophils from healthy donors was decreased after blocking lipoprotein receptor-related protein (LRP), a CRT receptor on macrophages. In contrast, neutrophils from patients with granulomatosis with polyangiitis expressing high membrane PR3 levels showed a lower rate of phagocytosis than those from healthy controls not affected by anti-LRP, suggesting that the LRP-CRT pathway was disturbed by PR3-CRT association. Moreover, phagocytosis of apoptotic PR3-expressing cells potentiated proinflammatory cytokine in vitro by human monocyte-derived macrophages and in vivo by resident murine peritoneal macrophages, and diverted the anti-inflammatory response triggered by the phagocytosis of apoptotic cells after LPS challenge in thioglycolate-elicited murine macrophages. Therefore, membrane PR3 expressed on apoptotic neutrophils might amplify inflammation and promote autoimmunity by affecting the anti-inflammatory "reprogramming" of macrophages.  相似文献   

11.
Recently, it was reported that the offset of hemodynamic forces induces an unusual pattern of apoptosis in vascular endothelium (1). Although the apoptotic trigger covers all cells and is maintained for a longer time period, only few cells become apoptotic. So, in contrast to common apoptosis inducers, the lack of hemodynamic forces initiates only a low basal level of apoptosis, however steadily increases with time, this way preventing the complete vessel destruction upon an only transient offset of blood flow. The molecular means by which the mechanical stimulus and apoptosis are smoothly coupled have now been identified as an autocrine loop of thrombospondin-1 (TSP-1) and the alpha(v)beta(3) integrin/integrin-associated protein (IAP) complex as its receptor. Vascular EC (EC) secrete TSP-1 only in postconfluent static monolayers and not under flow. This also holds true for the IAP whereas the alpha(v)beta(3) integrin is present under static conditions, as well as under flow, assigning the IAP an essential and new switch function in the receptor complex.  相似文献   

12.
Glucocorticoids promote macrophage phagocytosis of leukocytes undergoing apoptosis. Prereceptor metabolism of glucocorticoids by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) modulates cellular steroid action. 11beta-HSD type 1 amplifies intracellular levels of active glucocorticoids in mice by reactivating corticosterone from inert 11-dehydrocorticosterone in cells expressing the enzyme. In this study we describe the rapid (within 3 h) induction of 11beta-HSD activity in cells elicited in the peritoneum by a single thioglycolate injection in mice. Levels remained high in peritoneal cells until resolution. In vitro experiments on mouse macrophages demonstrated that treatment with inert 11-dehydrocorticosterone for 24 h increased phagocytosis of apoptotic neutrophils to the same extent as corticosterone. This effect was dependent upon 11beta-HSD1, as 11beta-HSD1 mRNA, but not 11beta-HSD2 mRNA, was expressed in these cells; 11-dehydrocorticosterone was ineffective in promoting phagocytosis by Hsd11b1(-/-) macrophages, and carbenoxolone, an 11beta-HSD inhibitor, prevented the increase in phagocytosis elicited in wild-type macrophages by 11-dehydrocorticosterone. Importantly, as experimental peritonitis progressed, clearance of apoptotic neutrophils was delayed in Hsd11b1(-/-) mice. These data point to an early role for 11beta-HSD1 in promoting the rapid clearance of apoptotic cells during the resolution of inflammation and indicate a novel target for therapy.  相似文献   

13.
A key feature of the process of programmed cell death (apoptosis) is the efficiency with which the dying cells are recognized and engulfed by phagocytes [1]. Apoptotic cells are rapidly cleared either by neighbouring cells acting as semi-professional phagocytes or by experts of the macrophage line, so that an inflammatory response is avoided [2]. The Caenorhabditis elegans gene ced-6 is required for efficient engulfment of apoptotic cells [3] and is one of a group of genes that define two partially redundant parallel pathways for the engulfment process [4] [5]. These pathways may be conserved across evolution, as two other engulfment genes have human homologues. A CED-5 homologue is part of a human CrkII-DOCK180-Rac signaling pathway proposed to mediate cytoskeletal reorganization [6] [7] [8] and a CED-7 homologue is similar to the ABC transporters [9] [10]. Here, we report the cloning and characterization of human CED-6, a human homologue of C. elegans CED-6. The 34 kDa hCED-6 protein is expressed in most tissues, some human cancer cells, and in primary human macrophages. We developed an assay that quantitates the phagocytic activity of mammalian macrophages: the number of apoptotic cells that have been internalized is measured by the uptake of lacZ-positive apoptotic cells by adherent transgenic macrophages. The results of this assay demonstrate that overexpression of hCED-6 promotes phagocytosis only of apoptotic cells and suggest that hCED-6 is the mammalian orthologue of C. elegans CED-6 and is a part of a highly conserved pathway that specifically mediates the phagocytosis of apoptotic cells.  相似文献   

14.
Localized tumor necrosis factor-alpha (TNFalpha) elevation has diverse effects in brain injury often attributed to signaling via TNFp55 or TNFp75 receptors. Both dentate granule cells and CA pyramidal cells express TNF receptors (TNFR) at low levels in a punctate pattern. Using a model to induce selective death of dentate granule cells (trimethyltin; 2 mg/kg, i.p.), neuronal apoptosis [terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ end labeling, active caspase 3 (AC3)] was accompanied by amoeboid microglia and elevated TNFalpha mRNA levels. TNFp55R (55 kDa type-1 TNFR) and TNFp75R (75 kDa type-2 TNFR) immunoreactivity in AC3(+) neurons displayed a pattern suggestive of receptor internalization and a temporal sequence of expression of TNFp55R followed by TNFp75R associated with the progression of apoptosis. A distinct ramified microglia response occurred around CA1 neurons and healthy dentate neurons that displayed an increase in the normal punctate pattern of TNFRs. Neuronal damage was decreased with i.c.v. injection of TNFalpha antibody and in TNFp55R-/-p75R-/- mice that showed higher constitutive mRNA levels for interleukin (IL-1alpha), macrophage inflammatory protein 1-alpha (MIP-1alpha), TNFalpha, transforming growth factor beta1, Fas, and TNFRSF6-assoicated via death domain (FADD). TNFp75R-/- mice showed exacerbated injury and elevated mRNA levels for IL-1alpha, MIP-1alpha, and TNFalpha. In TNFp55R-/- mice, constitutive mRNA levels for TNFalpha, IL-6, caspase 8, FADD, and Fas-associated phosphatase were higher; IL-1alpha, MIP-1alpha, and transforming growth factor beta1 lower. The mice displayed exacerbated neuronal death, delayed microglia response, increased FADD and TNFp75R mRNA levels, and co-expression of TNFp75R in AC3(+) neurons. The data demonstrate TNFR-mediated apoptotic death of dentate granule neurons utilizing both TNFRs and suggest a TNFp75R-mediated apoptosis in the absence of normal TNFp55R activity.  相似文献   

15.
Lipoxins (LXs) are endogenously produced anti-inflammatory agents that modulate leukocyte trafficking and stimulate nonphlogistic macrophage phagocytosis of apoptotic neutrophils, thereby promoting the resolution of inflammation. Previous data suggest a role for altered protein phosphorylation and cytoskeletal rearrangement in LX-stimulated phagocytosis but the exact mechanisms remain unclear. In this study we examine the effects of LXA4 on the protein phosphorylation pattern of THP-1 cells differentiated into a macrophage-like phenotype. THP-1 cells stimulated with LXA4 (1 nM) exhibit dephosphorylation of a 220-kDa protein. Using mass spectrometry, this protein was identified as MYH9, a nonmuscle myosin H chain II isoform A, which is involved in cytoskeleton rearrangement. THP-1 cells treated with LXA4 adopt a polarized morphology with activated Cdc42 localized toward the leading edge and MYH9 localized at the cell posterior. Polarized distribution of Cdc42 is associated with Akt/PKB-mediated Cdc42 activation. Interestingly, the annexin-derived peptide Ac2-26, a recently described agonist for the LXA4 receptor, also stimulates macrophage phagocytosis, MYH9 dephosphorylation, and MYH9 redistribution. In addition, we demonstrate that LXA4 stimulates the phosphorylation of key polarity organization molecules: Akt, protein kinase Czeta, and glycogen synthase kinase-3beta. Inhibition of LXA4-induced Akt and protein kinase Czeta activity with specific inhibitors prevented LXA4-stimulated phagocytosis of both apoptotic polymorphonuclear neutrophils and lymphocytes, highlighting a potential use for LXA4 in the treatment of autoimmune diseases. Furthermore, phosphorylation and subsequent inactivation of glycogen synthase kinase-3beta resulted in an increase in phagocytosis similar to that of LXA4. These data highlight an integrated mechanism whereby LXA4 regulates phagocytosis through facilitative actin cytoskeleton rearrangement and cell polarization.  相似文献   

16.
Phagocytic clearance of apoptotic leukocytes plays an important role in the resolution of inflammation. The glucocorticoid-inducible protein annexin 1 and annexin 1-derived peptides show potent anti-inflammatory responses in acute and chronic inflammation. In this study, we report that the annexin 1-derived peptide (Ac(2-26)) significantly stimulates nonphlogistic phagocytosis of apoptotic polymorphonuclear leukocytes (PMNs) by human monocyte-derived macrophages (Mphi). Peptide Ac(2-26)-stimulated phagocytosis is accompanied by rearrangement of the Mphi actin cytoskeleton. To investigate the potential role of endogenous annexin on clearance of apoptotic cells, Mphi were cultured for 5 days in the presence of dexamethasone. Supernatants collected from dexamethasone-treated Mphi significantly enhanced the ability of naive Mphi to engulf apoptotic PMNs. This effect was blocked by an annexin blocking Ab, by immunodepletion of the supernatants, and by the formyl peptide receptor/lipoxin receptor antagonist Boc1. In addition, we show that bone marrow-derived Mphi from annexin 1-null mice present a 40% decreased phagocytosis of apoptotic PMNs compared with cells taken from littermate controls. In conclusion, these results emphasize the pivotal role of annexin 1 as mediator for clearance of apoptotic cells and expand its potential therapeutic role in controlling inflammatory diseases.  相似文献   

17.
Immunosuppression via cell-cell contact with apoptotic cells is a well studied immunological phenomenon. Although the original studies of immune repression used primary cells, which undergo spontaneous cell death or apoptosis in response to irradiation, more recent studies have relied on chemotherapeutic agents to induce apoptosis in cell lines. In this work, we demonstrate that Jurkat cells induced to die with actinomycin D suppressed inflammatory cytokine production by macrophages, whereas cells treated with etoposide did not. This immune repression mediated by actinomycin D-treated cells did not require phagocytosis or cell-cell contact and thus occurs through a different mechanism from that seen with primary apoptotic neutrophils. Moreover, cells induced to die with etoposide and then treated for a short time with actinomycin D also suppressed macrophage responses, indicating that suppression was mediated by actinomycin D independent of the mechanism of cell death. Finally, phagocytosis of actinomycin D-treated cells caused apoptosis in macrophages, and suppression could be blocked by inhibition of caspase activity in the target macrophage. Together, these data indicate that apoptotic cells act as "Trojan horses," delivering actinomycin D to engulfing macrophages. Suppression of cytokine production by macrophages is therefore due to exposure to actinomycin D from apoptotic cells and is not the result of cell-receptor interactions. These data suggest that drug-induced death may not be an appropriate surrogate for the immunosuppressive activity of apoptotic cells. Furthermore, these effects of cytotoxic drugs on infiltrating immune phagocytes may have clinical ramifications for their use as antitumor therapies.  相似文献   

18.
The present study investigated the relationship between apoptotic and necrotic cell death and their role in pulmonary inflammatory response to endotoxin. Pulmonary administration of lipopolysaccharide (LPS) caused a rapid increase in the levels of pro-inflammatory cytokine TNF-alpha and inflammatory cell influx in the bronchoalveolar lavage (BAL) fluids. Control mice showed only resident alveolar macrophages with no apoptosis, whereas LPS-treated mice showed clear apoptosis of BAL cells. Microscopic studies confirmed the presence of apoptotic neutrophils and macrophages ingesting apoptotic bodies. The number of apoptotic neutrophils increased concomitantly with the increase in neutrophil influx which peaked 1 day after the treatment. However, necrosis was not detected at this early time, but increased subsequently and peaked at day 3. The levels of necrosis and apoptosis were both elevated and prolonged at high LPS doses. Treatment of mice with phosphatidylserine (PS)-containing liposome, known to inhibit macrophage phagocytosis of apoptotic cells, increased the level of apoptosis and necrosis caused by LPS, whereas control non-PS liposome or saline treatment had no effects. We conclude that necrosis occurs secondary to apoptosis in LPS-treated lung model and that this development is not the result of direct insult by LPS. Instead, our results and previous studies suggest that inefficient clearance of apoptotic cells by macrophages contributes, at least in part, to the levels of apoptosis and necrosis induced by LPS. Because necrosis is associated with cell damage and release of histotoxic contents, this development is likely to play a role in determining the severity and duration of lung toxicity induced by endotoxin.  相似文献   

19.
Phagocytosis of complement-opsonized targets is a primary function of neutrophils at sites of inflammation, and the clearance of neutrophils that have phagocytosed microbes is important for the resolution of inflammation. Our previous work suggests that phagocytosis leads to rapid neutrophil apoptosis that is inhibited by antibody to the beta2 integrin, Mac-1, and requires NADPH oxidase-derived reactive oxygen species (ROS) generated during phagocytosis. Here we report that phagocytosis-induced cell death (PICD) does not occur in Mac-1-deficient murine neutrophils, suggesting that PICD proceeds through a bona fide Mac-1-dependent pathway. A sustained, intracellular oxidative burst is associated with PICD. Furthermore, PICD does not require traditional death receptors, Fas, or tumor necrosis factor (TNF) receptor. TNF but not Fas synergizes with phagocytosis to enhance significantly PICD by increasing the oxidative burst, and this is Mac-1-dependent. Phagocytosis-induced ROS promote cleavage/activation of caspases 8 and 3, key players in most extrinsic ("death receptor") mediated pathways of apoptosis, and caspases 8 and 3 but not caspase 9/mitochondria, are required for PICD. This suggests that ROS target the extrinsic versus the intrinsic ("stress stimulus") apoptotic pathway. Phagocytosis also triggers a competing MAPK/ERK-dependent survival pathway that provides resistance to PICD likely by down-regulating caspase 8 activation. The anti-apoptotic factor granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly enhances ROS generation associated with phagocytosis. Despite this, it completely suppresses PICD by sustaining ERK activation and inhibiting caspase 8 activation in phagocytosing neutrophils. Together, these studies suggest that Mac-1-mediated phagocytosis promotes apoptosis through a caspase 8/3-dependent pathway that is modulated by NADPH oxidase-generated ROS and MAPK/ERK. Moreover, TNF and GM-CSF, likely encountered by phagocytosing neutrophils at inflammatory sites, exploit pro-(ROS) and anti-apoptotic (ERK) signals triggered by phagocytosis to promote or suppress PICD, respectively, and thus modulate the fate of phagocytosing neutrophils.  相似文献   

20.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号