首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antiviral agents interferon and statolon protected cells of the mouse line 3T3 against the transforming effect of simian virus 40. Loss of ability of these agents to protect when added some time after infection indicated that the transformation was already fixed. The cells of exponentially growing cultures became resistant to the protective effect of interferon at a linear rate after infection; after one cell generation, the whole population was resistant. By use of synchronous cultures, it was shown that, in cells passing though the G-1 period of the growth cycle, the transformation did not pass the interferon-sensitive stage, whereas cells in S [the period of cellular deoxyribonucleic acid (DNA) synthesis] readily passed this stage (i.e., became interferon-resistant). An irreversible step in transformation appeared to occur in cells synthesizing DNA, and it seems likely that replicating cellular DNA was the target of the viral action.  相似文献   

2.
Exposure of suspension-cultured HeLa cells to a 45° thermal shock resulted in cell inactivation and inhibition of both protein and DNA synthesis. DNA synthesis was inhibited in a biphasic manner with a more sensitive (D0 = 7 min) and a less sensitive (D0 = 20 min) phase. The less sensitive process was demonstrated to be DNA chain elongation. Transport of thymidine into intracellular pools was significantly less sensitive to thermal shock (D0 in excess of 200 min). When HeLa cells were heated at 45° for 15 min there was an 80% inhibition of incorporation of precursors into both DNA and protein with little effect on precursor transport into cellular pools. While the rate of synthesis of whole cell and histone protein (H2a, H2b, H3, and H4) and DNA chain elongation recovered by 6 h after cell heating, total precursor incorporation into DNA was only 0.4 of control levels. The long-term depression of the DNA synthetic rate could not be explained by a cell cycle redistribution, a depression in the total fraction of S phase cells synthesizing DNA, or by a depression in the rate of DNA chain elongation. We conclude that thermal shock results in a long-term depression in the fraction of cell replicons involved in DNA replication.  相似文献   

3.
Variation of Interferon Production During the Cell Cycle   总被引:1,自引:0,他引:1       下载免费PDF全文
The capacity of cells to produce interferon has been found to depend on the phase in the cell cycle at which virus infection took place. Monolayer cultures of L cells were synchronized by the double thymidine-block method. Such synchronously growing cultures were used to study the ability of cells to produce interferon when they were infected with ultraviolet-inactivated Newcastle disease virus (UV-NDV) at different phases of the cell cycle. In all instances, interferon was detected early and reached a maximum at about 16 hr after infection. However, the levels of interferon found in medium of cultures infected at early post-deoxyribonucleic acid (DNA) synthetic (G2) and to some extent at late G2 phases of the cell cycle were comparatively lower than those found in cultures infected at the early DNA synthetic (S) phase. There appeared also in these infected growing cultures a transient period when interferon production was apparently delayed. This period corresponded interestingly with the time of mitotic burst. Infection of thymidine- or 1-beta-d-arabino-furanosylcytosine-inhibited cultures with UV-NDV also led to similar interferon response as that observed in growing cultures infected at early S. However, no transient delay of interferon production was demonstrated in these cultures.  相似文献   

4.
G Uzé  G Lutfalla  I Gresser 《Cell》1990,60(2):225-234
A cDNA coding for the human interferon alpha receptor has been cloned using a gene transfer approach. This consists of transferring human DNA to mouse cells and selecting for cells sensitive to human interferon alpha. The transfected cells expressed the human interferon alpha receptor, and a 5 kb human DNA was isolated from a secondary transfectant. This DNA defects an mRNA present in human cells and was used to clone a 2.7 kb cDNA from a library constructed from human Daudi cells. The sequence of the cDNA is presented. It codes for a glycoprotein of 557 amino acids with an N-terminal hydrophobic region and a single transmembrane-spanning segment. Mouse cells expressing the cDNA become sensitive to the antiviral activity of and express binding sites for human interferon alpha, demonstrating that the cloned cDNA encodes a functional human interferon alpha receptor.  相似文献   

5.
Although two deoxyribonucleic acid (DNA) viruses, pseudorabies (PsRV) and vaccinia, are as susceptible as a ribonucleic acid (RNA) virus, vesicular stomatitis (VSV), to interferon when tested in chicken or mouse cells, they are refractory to inhibition in interferon-treated primary rabbit kidney cells and in a continuous line (RK-13) of rabbit kidney cells. Superinfection with VSV of RK-13 cells first infected with PsRV completely blocks the replication of PsRV with no effect on VSV yield. When the same experiment is carried out in RK-13 cells pretreated with 1,000 units of interferon, VSV replication is inhibited, which permits PsRV to replicate normally. These findings demonstrate that in the same cell one virus (PsRV) can be refractory to interferon and a second virus (VSV) can be susceptible. These experiments show that rabbit kidney cell cultures are deficient in the synthesis of resistance factors active against the DNA viruses tested and raise the possibility that separate resistance factors may exist for RNA and DNA viruses. In the case of sequential infection of interferon-treated RK-13 cells with vaccinia and VSV, it was found that not only was vaccinia replication refractory to inhibition by interferon, but also that prior infection with vaccinia was able to partially reverse the effect of the inhibitor on the replication of the VSV used for superinfection. On the basis of these and other data it is postulated that a vaccinia virion component or a replication product of vaccinia virus, or both, enables VSV to escape the inhibiting action of interferoninduced resistance factors.  相似文献   

6.
A flow cytometric method has recently been developed using biotinylated dUTP (b-dUTP) in a reaction catalyzed by terminal deozynucleotidyl transferase (TdT) to identify the endonuclease-induced DNA strand breaks occurring during apoptosis. Counterstaining of DNA makes it possible to relate apoptosis to cell cycle position or DNA index. In the present study, we compared this method with one using digoxigenin-conjugated dUTP (d-dUTP) to label apoptotic cells. The discrimination of apoptotic from nonapoptotic cells was similar when incorporation of d-dUTP was compared with b-dUTP. Both techniques resulted in a 20-30 fold increase in staining of apoptotic over nonapoptotic cells although somewhat less background fluorescence was observed with the d-dUTP. Direct labeling with fluo-resceinated dUTP (f-dUTP) was less sensitive in detecting DNA strand breaks, but had the advantage of simplicity. The principle of labeling DNA strand breaks using TdT was also employed to identify DNA replicating cells. To this end, the cells were incubated in the presence of BrdUrd, then exposed to UV light to selectively photolyse DNA containing the incorporated BrdUrd. DNA strand breaks resulting from the photolysis were then labeled with b-dUTP or d-dUTP. This approach is an alternative to immunocytochemical detection of BrdUrd incorporation, but unlike the latter does not require prior DNA denaturation, thus can be applied when the denaturation step must be avoided. The method was sensitive enough to recognize DNA synthesizing cells that were incubated with BrdUrd for only 5 min, the equivalent of replication of less than 1% of the cell's genome. The discrimination between apoptotic vs. BrdUrd incorporating-cells is based on different extractability of DNA following cell fixation. This method can be applied to analyze both cell proliferation (DNA replication) and death (by apoptosis) in a single measurement.  相似文献   

7.
A flow cytometric method has recently been developed using biotinylated dUTP (b-dUTP) in a reaction catalyzed by terminal deozynucleotidyl transferase (TdT) to identify the endonuclease-induced DNA strand breaks occurring during apoptosis. Counterstaining of DNA makes it possible to relate apoptosis to cell cycle position or DNA index. In the present study, we compared this method with one using digoxigenin-conjugated dUTP (d-dUTP) to label apoptotic cells. The discrimination of apoptotic from nonapoptotic cells was similar when incorporation of d-dUTP was compared with b-dUTP. Both techniques resulted in a 20–30 fold increase in staining of apoptotic over nonapoptotic cells although somewhat less background fluorescence was observed with the d-dUTP. Direct labeling with fluo-resceinated dUTP (f-dUTP) was less sensitive in detecting DNA strand breaks, but had the advantage of simplicity. The principle of labeling DNA strand breaks using TdT was also employed to identify DNA replicating cells. To this end, the cells were incubated in the presence of BrdUrd, then exposed to UV light to selectively photolyse DNA containing the incorporated BrdUrd. DNA strand breaks resulting from the photolysis were then labeled with b-dUTP or d-dUTP. This approach is an alternative to immunocytochemical detection of BrdUrd incorporation, but unlike the latter does not require prior DNA denaturation, thus can be applied when the denaturation step must be avoided. The method was sensitive enough to recognize DNA synthesizing cells that were incubated with BrdUrd for only 5 min, the equivalent of replication of less than 1% of the cell's genome. The discrimination between apoptotic vs. BrdUrd incorporating-cells is based on different extractability of DNA following cell fixation. This method can be applied to analyze both cell proliferation (DNA replication) and death (by apoptosis) in a single measurement.  相似文献   

8.
We have found a new biological function of interferons, namely, their capacity to protect human cells from the action of some physical and chemical mutagens. To evaluate the protective effect of interferons the following criteria were applied: formation of sister chromatid exchanges (SCE) and chromosomal aberrations (CA), as well as viability of cells and intensity of DNA repair synthesis. Pretreatment of cells with natural interferon decreased the number of sister chromatid exchanges and chromosomal aberrations, induced by different mutagens, and increased the intensity of DNA repair synthesis. This is attributed to the ability of interferon to enhance certain phases of DNA repair. In the case of photomutagenic action of 8-methoxypsoralen (8-MOP) on the lymphocytes, when monoadducts (MA) only, or both monoadducts and interstrand cross-links (ICL) are formed, the antimutagenic effect of interferon is exhibited only with respect to ICL. Unlike the natural interferon, the recombinant alpha 2-interferon failed to have any effect on the lymphocytes of clinically healthy donors exposed to gamma-radiation. In the repair- deficient cells (Marfan's syndrome) the protection of natural interferon against the action of 4-nitroquinoline-1'-oxide and gamma- radiation was found to be reduced significantly and that of alpha 2-interferon was not manifested at all. Thus, the capacity of interferons to alter the DNA repair, conceivably, depends on the type of interferon and on the cell genotype.  相似文献   

9.
D C Burke  C F Graham  J M Lehman 《Cell》1978,13(2):243-248
Pluripotential embryonal carcinoma (EC) cells do not produce interferon after treatment with a wide variety of inducers, nor are they sensitive to its action. Several differentiated lines derived from the EC cells, however, both produce and are sensitive to mouse interferon. Differentiation of EC cells in vitro is accompanied by development of interferon inducibility and sensitivity.  相似文献   

10.
Although no detectable interferon was produced when L cells were infected with wild-type VSV (VSV-o), considerable amounts of interferon were produced when cells were infected with UV-irradiated VSV-o at a multiplicity equivalent to 10 PFU/cell. Treatment of VSV-o with UV-light resulted in the marked reduction of the RNA synthesizing capacity and cytotoxity of the virus, and the UV-irradiated virus had neither infectivity nor interfering activity against homologous viruses. The amount of interferon induced by UV-VSV-o was markedly influenced by multiplicity of infection and incubation temperature. Less-virulent temperature-sensitive mutants (VSV-mp and VSV-sp) derived from L cells persistently infected with VSV induced interferon in L cells without treatment of the viruses with UV-light, but these viruses could not induce interferon if the infected cells were incubated at nonpermissive temperature, or if cells were infected at multiplicities of more than 10 PFU/cell. On the other hand, it was shown that treatment of cells with cycloheximide (100 μg/ml) delayed the expression of cell damage caused by non-irradiated VSV-o and resulted in the production of interferon when cycloheximide was removed from the cultures. These results indicate that VSV has intrinsically interferon-inducing capacity in L cells and can induce interferon if the induction is carried out under such condition that cell damage caused by VSV are suppressed or delayed. Furthermore, the effect of pretreatment of cells by interferon and undiluted passage of VSV-o on interferon induction was discussed in relation to persistent infection.  相似文献   

11.
Lactic dehydrogenase virus replicated rapidly in monolayers of primary mouse embryo cells and reached a titer of 10(8) mean infective dose per ml within 18 h after infection. Despite the high virus yield, cytopathology was not observed. Examination of the tissue culture media failed to reveal any evidence of interferon, but the virus was found to be as sensitive to mouse interferon as vesicular stomatitis virus. Incubation of mouse embryo cells with actinomycin D markedly inhibited viral replication, whereas cytosine-beta-d-arabinofuranoside and 5-fluorodeoxyuridine had no effect on replication. These findings indicate that new DNA synthesis is not required but suggest that the intact function of cellular DNA may be required for lactic dehydrogenase virus replication.  相似文献   

12.
Protective properties of human interferons against physical and chemical mutagens have been described earlier. This work was aimed at detecting an optimum of protective action of interferons in human fibroblasts using two criteria: the number of single-strand DNA breaks formed and the index of DNA repair synthesis. The protective ability of interferon was shown to be expressed starting after 4 h of cells' pretreatment and proceeding through 40 h in experiments with N-methyl-N-nitro-N-nitrosoquanidin. The phenomenon of stimulation of DNA repair synthesis in human cells pretreated with interferon proceeded even after replating cells during 8 h in the experiments with UV irradiation.  相似文献   

13.
Interferon effects on the growth and division of human fibroblasts.   总被引:9,自引:0,他引:9  
The overall rate of proliferation of human fibroblasts in culture is reduced at interferon concentrations greater than 40 international reference units (U)/ml. Inhibition is near maximal at 640 U/ml, at which concentration the doubling time between 24 and 72 h after beginning of treatment is increased 2–3 times over the control value. Inhibition of cell proliferation was not readily reversible upon removal of interferon and refeeding of cultures. Study of the mitotic behavior of individual cells showed that the first intermitotic interval after beginning of treatment with interferon (640 U/ml) was prolonged in about two-thirds of the cells. In this fraction, many cells failed to divide again after the second post-treatment mitosis, while others exhibited a progressively increasing intermitotic interval with subsequent divisions. One-third of the interferon-treated fibroblasts initially divided at a rate similar to the rate of proliferation of control cells, but subsequently these cells also slowed down and finally stopped dividing. After treatment at 640 U/ml for 3 days, the rates of DNA, RNA, and protein synthesis were depressed to 86, 75, and 64% of control values, respectively. However, the interferon-treated fibroblasts had grown larger than control cells as indicated by the following parameters: cell attachment area, 165%; volume, 131%; DNA content, 130% and protein content, 150%. Thus, interferon does not prevent cell growth, but interferes with cell division.  相似文献   

14.
Mode of Action of Vibriocin   总被引:2,自引:0,他引:2       下载免费PDF全文
The mechanism of action of vibriocin, a bacteriocin produced by Vibrio comma, was investigated. Its lethal action (as defined by the loss in colony-forming ability) was reversed by tryptic digestion within 7 to 10 min after adsorption. The bacteriocin had a pronounced inhibitory effect on deoxyribonucleic acid (DNA) synthesis, whereas ribonucleic acid (RNA) and protein synthesis continued, although at a reduced rate. Chloramphenicol protected sensitive bacteria from the lethal action. Degradation of bacterial DNA prelabeled with (3)H-thymidine, as measured by changes in acid-precipitable radioactivity, occurred 10 min after treatment with vibriocin. The bacteriocin per se had no detectable deoxyribonuclease activity. Observation of vibriocin-treated cells by phase-contrast microscopy, measurement of ultraviolet light-absorbing capacity of extracellular fluid, and (42)K-efflux studies indicated a damaged bacterial membrane. This impairment of membrane function occurred in the presence of chloramphenicol and thus, unlike the lethal effect of vibriocin, was independent of protein synthesis.  相似文献   

15.
16.
17.
We had earlier shown that human foetal epithelial cells (WISH), growth-inhibited by interferon gamma (IFNgamma), were reversibly detained at a point prior to DNA synthesis. In the present study, we determined the window of action of IFNgamma in the G1 phase duration and the exact point of detention of WISH cells in cell cycle progression with respect to the known points of detention by the inhibitors of DNA replication initiation (aphidicolin and carbonyl diphosphonate) and of activation of replication protein A (6-dimethylaminopurine), of which RPA activation being the earlier event compared to DNA replication initiation in cell cycle progression. WISH cells, which were released from IFNgamma-induced arrest, permeabilised and exposed independently to these inhibitors show that IFNgamma detains WISH cells prior to initiation of DNA synthesis. Further, exposure of IFNalpha-synchronized (at G0/G1) or mimosine-synchronized (at G1/S) WISH cells to IFNgamma, which was added at different time points post-release from the synchronizing agent, showed that the cells were promptly responsive to the growth inhibitory action of IFNgamma only during the first 11h in G1 phase. Taken together, these results suggest that IFNgamma inhibits growth of WISH cells by detaining them at a point prior to initiation of DNA synthesis and that the IFN acts within the first 11h in G1 phase of the cell cycle.  相似文献   

18.
The arrest of DNA synthesis and termination of cell division in basal meristematic cells as well as the resumption of these processes as related to the initiation of lateral root primordia (LRP) were studied in tissues of Triticum aestivumroots incubated with 3H-thymidine. All cells of the stelar parenchyma and cortex as well as most endodermal and pericycle cells left the mitotic cycle and ceased proliferative activity at the basal end of the meristem and at the beginning of the elongation zone. Some endodermal and pericycle cells started DNA synthesis in the basal part of the meristem and completed it later on during their elongation, but they did not divide. In the cells of these tissues, DNA synthesis resumed above the elongation zone, the cells being located much closer to the root tip than the first newly dividing cells. Thus, the initiation of LRP started much closer to the root tip than it was previously believed judging from the distance of the first dividing pericycle cells from the root tip. DNA synthesizing and dividing cells first appeared in the stelar parenchyma, then, in the pericycle, and later, in the endodermis and cortex. It seems likely that a release from the inhibition of DNA synthesis allows the cells that completed mitotic cycle in the basal part of meristem in the G1phase to cease the proliferative arrest above the elongation zone and to continue their cycling. The location of the first DNA synthesizing and dividing cells in the stelar parenchyma and pericycle did not strictly correspond to the LRP initiation sites and proximity to the xylem or phloem poles. This indicates that LRP initiation results from the resumption of DNA synthesis in all pericycle and stelar parenchyma cells that retained the ability to synthesize DNA and occurs only in the pericycle sector situated between the two tracheal protoxylem strands, all cells of which terminated their mitotic cycles in the G1phase.  相似文献   

19.
Antiviral action of mouse interferon in heterologous cells   总被引:5,自引:0,他引:5       下载免费PDF全文
Buckler, Charles E. (National Institute of Allergy and Infectious Diseases, Bethesda, Md.), and Samuel Baron. Antiviral action of mouse interferon in heterologous cells. J. Bacteriol. 91:231-235. 1966.-The antiviral action of mouse interferon in cell cultures of mouse, hamster, rat, chicken, and monkey origin was investigated. Using a vesicular stomatitis virus (VSV) plaque reduction test, we found that mouse serum interferon, assayed on closely related rat or hamster cells, exerted 5% of its homologous antiviral activity. This activity was characterized as interferon by its temperature of inactivation, trypsin sensitivity, nonsedimentability, stability at pH 2, lack of inactivation by antibody to virus, and inability to be washed off cells. In the more distantly related chicken and monkey cells, mouse interferon had less than 0.1% of its homologous activity. Conflicting reports of heterologous activity of chicken and mouse interferon preparations may result in part from the observed action of noninterferon inhibitors of vaccinia virus. These inhibitors, like interferon, are stable at pH 2. They are present in mouse serum, mouse lung extracts, and allantoic fluid, and they prevent the development of vaccinia plaques when allowed to remain in contact with cells during virus growth. Unlike interferon the inhibitors are removed by adequate washing of cells prior to virus challenge, and they are not active in the VSV assay system. These findings reemphasize the need for thorough characterization of interferon preparations.  相似文献   

20.
The long-term effects of interferon treatment on cell lines that maintain human papillomavirus type 31 (HPV-31) episomes have been examined. High doses and prolonged interferon treatment resulted in growth arrest of HPV-positive cells, with a high percentage of cells undergoing apoptosis. These effects were not seen with interferon treatment of either normal human keratinocytes or cells derived from HPV-negative squamous carcinomas, which exhibited only slight decreases in their rates of growth. Within 2 weeks of the initiation of treatment, a population of HPV-31-positive cells that were resistant to interferon appeared consistently and reproducibly. The resistant cells had growth and morphological characteristics similar to those of untreated cells. Long-term interferon treatment of HPV-positive cells also resulted in a reduction in HPV episome levels but did not significantly decrease the number of integrated copies of HPV. Cells that maintained HPV genomes lacking E5 were sensitive to interferon, while cells expressing only the E6/E7 genes were resistant. In contrast, cells that expressed E2 from a tetracycline-inducible promoter were found to be significantly more sensitive to interferon treatment than parental cells. This suggests that at least a portion of the sensitivity to interferon could be mediated through the E2 protein. These studies indicate that cells maintaining HPV episomes are highly sensitive to interferon treatment but that resistant populations arise quickly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号