首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galectins are a family of β-galactoside-binding lectins that contain a conserved carbohydrate recognition domain (CRD). They exhibit high affinities for small β-galactosides as well as variable binding specificities for complex glycoconjugates. Structural and biochemical analyses of the mechanism governing specific carbohydrate recognition provide a useful template to elucidate the function of these proteins. Here we report the crystal structures of the human galectin-9 N-terminal CRD (NCRD) in the presence of lactose and Forssman pentasaccharide. Mouse galectin-9 NCRD, the structure of which was previously solved by our group, forms a non-canonical dimer in both the crystal state and in solution. Human galectin-9 NCRD, however, exists as a monomer in crystals, despite a high sequence identity to the mouse homologue. Comparative frontal affinity chromatography analysis of the mouse and human galectin-9 NCRDs revealed different carbohydrate binding specificities, with disparate affinities for complex glycoconjugates. Human galectin-9 NCRD exhibited a high affinity for Forssman pentasaccharide; the association constant for mouse galectin-9 NCRD was 100-fold less than that observed for the human protein. The combination of structural data with mutational studies demonstrated that non-conserved amino acid residues on the concave surface were important for determination of target specificities. The human galectin-9 NCRD exhibited greater inhibition of cell proliferation than the mouse NCRD. We discuss the biochemical and structural differences between highly homologous proteins from different species.  相似文献   

2.
A beta-galactoside-specific soluble 14-kD lectin from sheep brain was isolated, sequenced, and compared with similar galectins from other species. Percent identities of amino acid sequence and the carbohydrate recognition domain (CRD) revealed that the isolated galectin shares all the absolutely preserved and critical residues of the mammalian galectin-1 subfamily. The isolated sheep brain galectin (SBG) showed more than 90% amino acid sequence (92%) and carbohydrate recognition domain identity (96%) with human brain galectin-1. Conformational changes were found induced by interaction of the protein with its specific disaccharide and oxidizing agent (hydrogen peroxide). Upon oxidation a drastic change in the environment of aromatic residues and conformation of the galectin was observed with the loss of hemagglutination activity, while no significant change was observed upon addition of D-lactose (Gal(beta1-4)Glc) in the far-UV and near-UV spectra, suggesting no significant modification in the secondary as well as tertiary structures of sheep brain galectin. But the functional integrity of the CRD is found to be affected in the presence of oxidizing agent, indicating intramolecular disulfide bonds and requirement of complete polypeptide chain for functional integrity of the carbohydrate recognition domain.  相似文献   

3.
The cDNA sequence of rabbit motilin precursor has been determined. The predicted amino acid sequence indicates that the precursor consists of 133 amino acids and includes a 25 amino acid signal peptide followed by the 22 amino acid motilin sequence and an 86 amino acid motilin associated peptide (MAP). As in the human and porcine precursors, two lysine residues follow motilin in the rabbit sequence. Rabbit motilin shares 64% amino acid sequence identity with human and porcine motilin, and all amino acid substitutions represent conservative changes. Amino acid sequence alignments of the rabbit, human and porcine MAP sequences suggest three functional/structural motifs corresponding to a putative endoproteinase recognition site, a putative PEST site and a potential posttranslational processing recognition element.  相似文献   

4.
A model structure (Henrick,K., Bawumia,S., Barboni,E.A.M., Mehul,B. and Hughes, R.C. (1998) Glycobiology:, 8, 45-57) of the carbohydrate recognition domain (CRD, amino acid residues 114-245) of hamster galectin-3 has been extended to include N-terminal domain amino acid residues 91-113 containing one of the nine proline-rich motifs present in full-length hamster galectin-3. The modeling predicts two configurations of the N-terminal tail: in one the tail turns toward the first (SI) and last (S12) beta-strands of the CRD and lies at the apolar dimer interface observed for galectins -1 and -2. In the second folding arrangement the N-terminal tail lies across the carbohydrate-binding pocket of the CRD where it could participate in sugar-binding: in particular tyrosine 102 and adjacent residues may interact with the partly solvent exposed nonreducing N-acetylgalactosamine and fucose substituents of the A-blood group structure GalNAcalpha1,3 [Fucalpha1,2]Galbeta1,4GlcNAc-R. Binding studies using surface plasmon resonance of a recombinant fragment Delta1-93 protein containing residues 94-245 of hamster galectin-3 and a collagenase-derived fragment Delta1-103 containing residues 104-245, as well as alanine mutagenesis of residues 101-105 in Delta1-93 protein, support the prediction that Tyr102 and adjacent residues make significant contributions to oligosaccharide binding.  相似文献   

5.
The cDNAs corresponding to the mRNA encoding a polypeptide which is immunoreactive with the antisera specific to carcinoembryonic antigen (CEA) (1) are cloned. The amino acid sequences deduced from the nucleotide sequences of the cDNAs show that it is synthesized as a precursor with a signal peptide followed by 668 amino acids of the putative mature CEA peptide, whose N-terminal 24 amino acids and amino acids 286 to 295 exactly coincide with those known for N-terminal sequences of CEA (2) and NFA-1 (3), respectively. The first 108 N-terminal residues are followed by three very homologous repetitive domains of 178 residues each and then by 26 mostly hydrophobic residues which probably comprise a membrane anchor. Each repetitive domains contains 4 cysteines at precisely the same positions and as many as 28 possible N-glycosylation sites are found in the CEA peptide region agreeing with high carbohydrate content of purified CEA.  相似文献   

6.
Galectins are a growing family of animal lectins with common consensus sequences that bind beta-Gal and LacNAc residues. There are at present 14 members of the galectin family; however, certain galectins possess different structures as well as biological properties. Galectin-1 is a dimer of two homologous carbohydrate recognition domains (CRDs) and possesses apoptotic and proinvasive activities. Galectin-3 consists of a C-terminal CRD and an N-terminal nonlectin domain implicated in the oligomerization of the protein and is often associated with antiapoptotic activity. Because many cellular oligosaccharide receptors are multivalent, it is important to characterize the interactions of multivalent carbohydrates with galectins-1 and -3. In the present study, binding of bovine heart galectin-1 and recombinant murine galectin-3 to a series of synthetic analogs containing two LacNAc residues separated by a varying number of methylene groups, as well as biantennary analogs possessing two LacNAc residues, were examined using isothermal titration microcalorimetry (ITC) and hemagglutination inhibition measurements. The thermodynamics of binding of the multivalent carbohydrates to the C-terminal CRD domain of galectin-3 was also investigated. ITC results showed that each bivalent analog bound by both LacNAc residues to the two galectins. However, galectin-1 shows a lack of enhanced affinity for the bivalent straight chain and branched chain analogs, whereas galectin-3 shows enhanced affinity for only lacto-N-hexaose, a naturally occurring branched chain carbohydrate. The CRD domain of galectin-3 was shown to possess similar thermodynamic binding properties as the intact molecule. The results of this study have important implications for the design of carbohydrate inhibitors of the two galectins.  相似文献   

7.
8.
The TCR recognition of peptides bound to MHC class II molecules is highly flexible in some T cells. Although progress has been made in understanding the interactions within the trimolecular complex, to what extent the individual components and their amino acid composition contribute to ligand recognition by individual T cells is not completely understood. We investigated how single amino acid residues influence Ag recognition of T cells by combining several experimental approaches. We defined TCR motifs for CD4+ T cells using peptide synthetic combinatorial libraries in the positional scanning format (PS-SCL) and single amino acid-modified peptide analogues. The similarity of the TCR motifs defined by both methods and the identification of stimulatory antigenic peptides by the PS-SCL approach argue for a contribution of each amino acid residue to the overall potency of the antigenic peptide ligand. In some instances, however, motifs are formed by adjacent amino acids, and their combined influence is superimposed on the overall contribution of each amino acid within the peptide epitope. In contrast to the flexibility of the TCR to interact with different peptides, recognition was very sensitive toward modifications of the MHC-restriction element. Exchanges of just one amino acid of the MHC molecule drastically reduced the number of peptides recognized. The results indicate that a specific MHC molecule not only selects certain peptides, but also is crucial for setting an affinity threshold for TCR recognition, which determines the flexibility in peptide recognition for a given TCR.  相似文献   

9.
Cell cycle regulation by galectin-12, a new member of the galectin superfamily   总被引:13,自引:0,他引:13  
Galectins are a family of beta-galactoside-binding animal lectins with conserved carbohydrate recognition domains (CRDs). Here we report the identification and characterization of a new galectin, galectin-12, which contains two domains that are homologous to the galectin CRD. The N-terminal domain contains all of the sequence elements predicted to form the two beta-sheets found in other galectins, as well as conserved carbohydrate-interacting residues. The C-terminal domain shows considerable divergence from the consensus sequence, and many of these conserved residues are not present. Nevertheless, the protein has lactose binding activity, most likely due to the contribution of the N-terminal domain. The mRNA for galectin-12 contains features coding for proteins with growth-regulatory functions. These include start codons in a context that are suboptimal for translation initiation and AU-rich motifs in the 3'-untranslated region, which are known to confer instability to mRNA. Galectin-12 mRNA is sparingly expressed or undetectable in many tissues and cell lines tested, but it is up-regulated in cells synchronized at the G(1) phase or the G(1)/S boundary of the cell cycle. Ectopic expression of galectin-12 in cancer cells causes cell cycle arrest at the G(1) phase and cell growth suppression. We conclude that galectin-12 is a novel regulator of cellular homeostasis.  相似文献   

10.
The galectin family of lectins regulates multiple biologic functions, such as development, inflammation, immunity, and cancer. One common function of several galectins is the ability to trigger T cell death. However, differences among the death pathways triggered by various galectins with regard to glycoprotein receptors, intracellular death pathways, and target cell specificity are not well understood. Specifically, galectin-9 and galectin-1 both kill thymocytes, peripheral T cells, and T cell lines; however, we have found that galectin-9 and galectin-1 require different glycan ligands and glycoprotein receptors to trigger T cell death. The two galectins also utilize different intracellular death pathways, as galectin-9, but not galectin-1, T cell death was blocked by intracellular Bcl-2, whereas galectin-1, but not galectin-9, T cell death was blocked by intracellular galectin-3. Target cell susceptibility also differed between the two galectins, as galectin-9 and galectin-1 killed different subsets of murine thymocytes. To define structural features responsible for distinct activities of the tandem repeat galectin-9 and dimeric galectin-1, we created a series of bivalent constructs with galectin-9 and galectin-1 carbohydrate recognition domains connected by different peptide linkers. We found that the N-terminal carbohydrate recognition domain and linker peptide contributed to the potency of these constructs. However, we found that the C-terminal carbohydrate recognition domain was the primary determinant of receptor recognition, death pathway signaling, and target cell susceptibility. Thus, carbohydrate recognition domain specificity, presentation, and valency make distinct contributions to the specific effects of different galectins in initiating T cell death.  相似文献   

11.
The galectin family is a representative soluble lectin group, which is responsible for the modulation of various cell functions. Although the carbohydrate-binding specificity of galectins has been well-studied, the relationship between protein structure and specificity remains to be elucidated. We previously reported the characteristics of a Xenopus laevis skin galectin, xgalectin-Va, which had diverged from galectin-1. The carbohydrate selectivity of xgalectin-Va was different from that of human galectin-1 and xgalectin-Ib (a Xenopus laevis galectin-1 homolog). In this study, we clarified the key residues for this selectivity by site-directed mutagenesis. Substitution of two amino acids of xgalectin-Va, Val56Gly/Lys76Arg, greatly enhanced the binding ability to N-acetyllactosamine and conferred significant T-cell growth inhibition activity, although the wild type had no activity. These two residues, Gly54 and Arg74 in galectin-1, would cooperatively contribute to the N-acetyllactosamine recognition. The loop region between the S4 and S5 β-strands was involved in the binding to the TF-antigen disaccharide. The loop substitution successfully changed the carbohydrate selectivity of xgalectin-Va and xgalectin-Ib.  相似文献   

12.
Galectin-4 in normal tissues and cancer   总被引:4,自引:0,他引:4  
Galectin-4 belongs to a subfamily of galectins composed of two carbohydrate recognition domains within the same peptide chain. The two domains have all the conserved galectin signature amino acids, but their overall sequences are only approximately 40% identical. Both domains bind lactose with a similar affinity as other galectins, but their respective preferences for other disaccharides, and larger saccharides, are distinctly different. Thus galectin-4 has a property of a natural cross-linker, but in a modified sense since each domain prefers a different subset of ligands. Similarly to other galectins, galectin-4 is synthesized as a cytosolic protein, but can be externalized. During development and in adult normal tissues, galectin-4 is expressed only in the alimentary tract, from the tongue to the large intestine. It is often found in relatively insoluble complexes, as a component of either adherens junctions or lipid rafts in the microvillus membrane, and it has been proposed to stabilize these structures. Strong expression of galectin-4 can be induced, however, in cancers from other tissues including breast and liver. Within a collection of human epithelial cancer cell lines, galectin-4 is overexpressed and soluble in those forming highly differentiated polarized monolayers, but absent in less differentiated ones. In cultured cells, intracellular galectin-4 may promote resistance to nutrient starvation, whereas--as an extracellular protein--it can mediate cell adhesion. Because of its distinct induction in breast and other cancers, it may be a valuable diagnostic marker and target for the development of inhibitory carbohydrate-based drugs.  相似文献   

13.
Evidence for a role for galectin-1 in pre-mRNA splicing.   总被引:11,自引:0,他引:11       下载免费PDF全文
Galectins are a family of beta-galactoside-binding proteins that contain characteristic amino acid sequences in the carbohydrate recognition domain (CRD) of the polypeptide. The polypeptide of galectin-1 contains a single domain, the CRD. The polypeptide of galectin-3 has two domains, a carboxyl-terminal CRD fused onto a proline- and glycine-rich amino-terminal domain. In previous studies, we showed that galectin-3 is a required factor in the splicing of nuclear pre-mRNA, assayed in a cell-free system. We now document that (i) nuclear extracts derived from HeLa cells contain both galectins-1 and -3; (ii) depletion of both galectins from the nuclear extract either by lactose affinity adsorption or by double-antibody adsorption results in a concomitant loss of splicing activity; (iii) depletion of either galectin-1 or galectin-3 by specific antibody adsorption fails to remove all of the splicing activity, and the residual splicing activity is still saccharide inhibitable; (iv) either galectin-1 or galectin-3 alone is sufficient to reconstitute, at least partially, the splicing activity of nuclear extracts depleted of both galectins; and (v) although the carbohydrate recognition domain of galectin-3 (or galectin-1) is sufficient to restore splicing activity to a galectin-depleted nuclear extract, the concentration required for reconstitution is greater than that of the full-length galectin-3 polypeptide. Consistent with these functional results, double-immunofluorescence analyses show that within the nucleus, galectin-3 colocalizes with the speckled structures observed with splicing factor SC35. Similar results are also obtained with galectin-1, although in this case, there are areas of galectin-1 devoid of SC35 and vice versa. Thus, nuclear galectins exhibit functional redundancy in their splicing activity and partition, at least partially, in the nucleoplasm with another known splicing factor.  相似文献   

14.
Galectin-9 is a b-galactoside-binding lectin that regulates many cellular functions, ranging from cell adhesion to pathogen recognition. We isolated and characterized the cDNA of tandem-repeat galectin-9 (RuGlec9) from the Korean rose bitterling (Rhodeus uyekii), an endemic Korean fish belonging to the Acheilognathinae subfamily of the Cyprinidae family. RuGlec9 cDNA is 1486 bp long and encodes a polypeptide of 323 amino acids containing two carbohydrate-recognition domains connected by a linker peptide. The deduced amino acid sequence of RuGlec9 shows 45-84% amino acid sequence identity to other galectin-9 sequences, including those from mammals and fish. RuGlec9 appeared in a large cluster with other galectin-9 sequences from fish and is more closely related to galectin-9 from Danio rerio than to those of other fish and mammals. RuGlec9 mRNA was expressed highly in the testis, spleen, intestine, stomach, and liver, and moderately in the brain, kidney, ovary, and gills of normal Korean rose bitterling. RuGlec9 mRNA expression in the spleen was increased by lipopolysaccharide. These results suggest that RuGlec9 plays a role in innate immunity in Korean rose bitterling.  相似文献   

15.
The galectins are a family of beta-galactoside-binding animal lectins with a conserved carbohydrate recognition domain (CRD). They have a high affinity for small beta-galactosides, but binding specificity for complex glycoconjugates varies considerably within the family. The ligand recognition is essential for their proper function, and the structures of several galectins have suggested their mechanism of carbohydrate binding. Galectin-9 has two tandem CRDs with a short linker, and we report the crystal structures of mouse galectin-9 N-terminal CRD (NCRD) in the absence and the presence of four ligand complexes. All structures form the same dimer, which is quite different from the canonical 2-fold symmetric dimer seen for galectin-1 and -2. The beta-galactoside recognition mechanism in the galectin-9 NCRD is highly conserved among other galectins. In the apo form structure, water molecules mimic the ligand hydrogen-bond network. The galectin-9 NCRD can bind both N-acetyllactosamine (Galbeta1-4GlcNAc) and T-antigen (Galbeta1-3GalNAc) with the proper location of Arg-64. Moreover, the structure of the N-acetyllactosamine dimer (Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc) complex shows a unique binding mode of galectin-9. Finally, surface plasmon resonance assay showed that the galectin-9 NCRD forms a homophilic dimer not only in the crystal but also in solution.  相似文献   

16.
The nucleotide sequence coding for the fourth component of mouse complement (C4) has been determined from a cloned genomic DNA fragment and a cloned cDNA fragment. The amino acid sequence of the protein was deduced. The single chain precursor protein (pro-C4) consists of 1719 amino acid residues. The mature beta, alpha, and gamma subunits contain 654, 766, and 291 amino acids, respectively. One potential carbohydrate attachment site is predicted for the beta chain, three for the alpha chain, and none for the gamma chain. From a comparison with human C4 cDNA sequence an extensive overall sequence homology, 79% in nucleotides and 76% in amino acids, is observed. There is conservation in both the position and number of cysteine residues in human and mouse C4. We compared the mouse C4 amino acid sequences with those of mouse C3 and human alpha 2-macroglobulin and the evolutionary relationship among these three proteins is discussed.  相似文献   

17.
Viral epitopes that are recognized by both HLA class I-restricted and class II-restricted T cells have been defined for a type A influenza virus nucleoprotein (NP) peptide. CD8+ and CD4+ CTL lines have been generated against a synthetic peptide encompassing residues 335 to 349 of NP that are restricted by HLA-B37 and HLA-DQw5, respectively. Both of these CTL populations were capable of specifically lysing influenza A virus-infected targets, indicating that a naturally processed NP peptide(s) was being mimicked by the NP (335-349) peptide. Amino acid residues that are critical for recognition of this NP determinant in the context of HLA-B37 and HLA-DQw5 were investigated by the use of panels of truncated and alanine-substituted NP peptides. The results demonstrate that: 1) truncations in the amino- or carboxy-terminal ends differentially affect CD8+ and CD4+ CTL recognition; 2) the NP (335-349) sequence contains two octapeptide epitopes that share a core of six amino acid residues (NP 338-343); and 3) alanine substitutions at five of these residues abrogated recognition by at least one of the CD8+ and CD4+ CTL lines. Thus, these class I- and class II-restricted CTL lines recognize similar but distinct epitopes, and different structural features of the NP peptide are required for presentation by HLA-B37 and HLA-DQw5. Comparison of the amino acid sequences of the NP peptide presented by HLA-B37 and HLA-DQw5 with other peptides known to be presented by both class I and class II molecules revealed a common motif among these peptides.  相似文献   

18.
We have mapped the linear antigenic determinant of a commercial MAb raised in the mouse against the melanoma-associated-antigen Melan-A/MART-1. The B cell epitope on the Melan-A/MART-1 oncoprotein is located in the 15-mer amino acid sequence 101-115 PPAYEKLSAEQSPPP, within residues 102-106. The definition of the antigenic sequence on Melan-A/MART-1 oncoprotein was reached following analyses of MHC II binding potential and similarity level to the mouse proteome, that put into evidence the 15-mer amino acid sequence 101-115 PPAYEKLSAEQSPPP as the top scoring peptide in binding H2-A(d) molecules and the epitopic sequence residues 102-106 (i.e., the peptide sequence PAYEK) as having low-similarity level to the mouse proteome. Dot-blot epitope mapping immunoassay identified proline residue 102 as critical, based on its effect on antibody recognition. The present study adds to previous companion reports in validating the hypothesis that low-similarity to the host's proteome and binding potential to MHC II molecules are essential concurring factors in the modulation of the pool of epitopic sequences.  相似文献   

19.
Galectin-4 belongs to a subfamily of galectins composed of two carbohydrate recognition domains within the same peptide chain. The two domains have all the conserved galectin signature amino acids, but their overall sequences are only approximately 40% identical. Both domains bind lactose with a similar affinity as other galectins, but their respective preferences for other disaccharides, and larger saccharides, are distinctly different. Thus galectin-4 has a property of a natural cross-linker, but in a modified sense since each domain prefers a different subset of ligands. Similarly to other galectins, galectin-4 is synthesized as a cytosolic protein, but can be externalized. During development and in adult normal tissues, galectin-4 is expressed only in the alimentary tract, from the tongue to the large intestine. It is often found in relatively insoluble complexes, as a component of either adherens junctions or lipid rafts in the microvillus membrane, and it has been proposed to stabilize these structures. Strong expression of galectin-4 can be induced, however, in cancers from other tissues including breast and liver. Within a collection of human epithelial cancer cell lines, galectin-4 is overexpressed and soluble in those forming highly differentiated polarized monolayers, but absent in less differentiated ones. In cultured cells, intracellular galectin-4 may promote resistance to nutrient starvation, whereas—as an extracellular protein—it can mediate cell adhesion. Because of its distinct induction in breast and other cancers, it may be a valuable diagnostic marker and target for the development of inhibitory carbohydrate-based drugs. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Sialidase (EC 3.2.1.18) catalyzes the release of sialic acid from sialo-oligosaccharides, gangliosides, or sialo-glycoproteins. In this investigation, we cloned a novel cDNA for mouse brain sialidase and expressed the cDNA in COS-7 cells. This 1,699 bp cDNA codes for a 41.6 kDa protein consisting of 372 deduced amino acid residues. In COS-7 cells transiently transfected with the cDNA, a 250-fold increase was observed in specific activity toward 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Similarity searches of the nonredundant GenBank peptide sequence database by the PSI-BLAST program identified rat, hamster, human, and bacterial sialidases homologous to this mouse brain sialidase. Amino acid sequence identities to rat and hamster sialidases (84% and 77%, respectively) suggest that this form of sialidase is conserved in rodents. Sequence identities to human and mouse lysosomal sialidases (30% and 28%, respectively) indicate that the mouse brain sialidase is distinct from the lysosomal enzyme. Mouse brain sialidase has two amino acid sequence motifs common to bacterial sialidases: the 'F/YRIP' motif and the 'Asp-box' motif. The 'F/YRIP' motif is present near the N terminus while two 'Asp-box' motifs are present downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号