首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
plsB mutants of Escherichia coli are sn-glycerol 3-phosphate auxotrophs which owe their requirement to a K(m) defect in sn-glycerol 3-phosphate acyltransferase, the first enzyme in the phospholipid biosynthetic pathway. We have located the plsB gene at minute 69 of the E. coli genetic map, far removed from the gene defined by mutants with a temperature-sensitive sn-glycerol 3-phosphate acyltransferase. The plsB gene was cotransduced with the dctA locus, and the transduction data indicated that the clockwise gene order is asd, plsB, dctA, xyl. plsB(-) is recessive to plsB(+) and all acyltransferase K(m) mutants tested lie very close to the plsB locus. Effective supplementation of plsB mutants was shown not to require a defective glpD gene.  相似文献   

2.
Mutants with impaired biosynthesis of unsaturated fatty acids or altered metabolism of the phospholipids were isolated at a rather high frequency from a set of temperature-sensitive lysis mutants. It is suggested that preselection for the lysis phenotype makes it possible to isolate several kinds of mutants affected in the integrity of the cytoplasmic membrane.  相似文献   

3.
sn-Glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli have been selected from a strain which cannot aerobically catabolize G3P. The auxotrophy resulted from loss of the biosynthetic G3P dehydrogenase (EC 1.1.1.8) or from a defective membranous G3P acyltransferase. The apparent K(m) of the acyltransferase for G3P was 11- to 14-fold higher (from about 90 mum to 1,000 to 1,250 mum) in membrane preparations from the mutants than those of the parent. All extracts prepared from revertants of the G3P dehydrogenase mutants showed G3P dehydrogenase activity, but most contained less than 10% of the wild-type level. Membrane preparations from revertants of the acyltransferase mutants had apparent K(m)'s for G3P similar to that of the parent. Strains have been derived in which the G3P requirement can be satisfied with glycerol in the presence of glucose, presumably because the glycerol kinase was desensitized to inhibition by fructose 1,6-diphosphate. Investigations on the growth and macromolecular synthesis in a G3P acyltransferase K(m) mutant revealed that upon glycerol deprivation, net phospholipid synthesis stopped immediately; growth continued for about one doubling; net ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein nearly doubled paralleling the growth curve; the rate of phospholipid synthesis assessed by labeling cells with (32)P-phosphate, (14)C-acetate, or (3)H-serine was reduced greater than 90%; the rates of RNA and DNA synthesis increased as the cells grew and then decreased as the cells stopped growing; the rate of protein synthesis showed no increase and declined more slowly than the rates of RNA and DNA synthesis when the cells stopped growing. The cells retained and gained in the capacity to synthesize phospholipids upon glycerol deprivation. These data indicate that net phospholipid synthesis is not required for continued macromolecular synthesis for about one doubling, and that the rates of these processes are not coupled during this time period.  相似文献   

4.
In this article, we provide evidence for the presence of diglyceride kinase activity in cell extracts of Rhizobium meliloti 1021. Characterization of the rhizobial enzyme revealed that it shares many properties with the diglyceride kinase of Escherichia coli. A possible role for this enzyme during cyclic beta-1,2-glucan biosynthesis is discussed.  相似文献   

5.
The inner or cytoplasmic membrane fraction of the cell envelope of Escherichia coli was isolated by isopycnic centrifugation on sucrose gradients. The membrane proteins were analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels (8.5%), and up to 56 bands were resolved. Different preparations gave very similar patterns of proteins. Succinate dehydrogenase mutants (sdh) were isolated which could not grow on succinate minimal medium, although growth on fumarate was unimpaired. The protein patterns of inner membrane preparations from sdh amber mutants were compared with the wild type, and one major band was greatly reduced in the mutants. This component, which represented approximately 5% of the inner membrane protein, was restored by introducing an amber suppressor gene (supU), which also restored the Sdh(+) phenotype. The band corresponded to a protein with a molecular weight of 67,000 daltons, which is close to that for the large subunits of the succinate dehydrogenases of Rhodospirillum rubrum and beef heart mitochondria.  相似文献   

6.
Ten cold-sensitive mutants defective in deoxyribonucleic acid (DNA) synthesis at 20 C have been identified among 218 cold-sensitive mutants isolated from a mutagenized population of Escherichia coli K-12. Four of the ten mutant alleles, dna-339 dna-340, dna-341, and dna-342, cotransduce with serB(+) and hence may be dnaC mutants. Two of these, dna-340 and dna-341, are recessive to their wild-type allele. The gene product of their wild-type allele is trans acting. Complementation tests have demonstrated that dna-340 and dna-341 are in the same cistron. The mapping of the remaining six mutations is in progress. In an attempt to determine whether LW4 and LW21 were initiator mutants, cultures of these strains were starved of an essential amino acid at 37 C and then incubated at 15 C with the essential amino acid. The amount of DNA synthesis observed under these circumstances was insignificant. These data are consistent with the idea that LW4 and LW21 are initiator mutants. However, attempts to integratively suppress LW4 and LW21 with F' factors were unsuccessful. To resolve the question of whether or not LW4 and LW21 are initiator mutants, more specific tests and criteria are required. Cultures of LW4 and LW21 were toluene treated and used to measure in vitro DNA synthesis. If the cells were incubated either at 15 or 20 C before toluene treatment, they were capable of markedly less DNA synthesis than if preincubation had not occurred. The amount of in vitro DNA synthesis is directly proportional to the amount of DNA synthesis occurring during preincubation in vivo; i.e., more DNA synthesis is observed at 20 than at 15 C. The fact that the cold-sensitive mutants are unable to synthesize DNA when supplied with deoxyribonucleoside triphosphates, DNA precursors, is evidence they are not defective in precursor synthesis.  相似文献   

7.
Mutants of Escherichia coli Sensitive to Antibiotics   总被引:9,自引:3,他引:6       下载免费PDF全文
Mutants of Escherichia coli sensitive to the antibiotic synergistin A, an inhibitor of protein synthesis, were isolated. These mutants were pleiotropic, being also sensitive to a large number of unrelated antibiotics and to lysis by detergents. These pleiotropic responses indicated that the mutations affected cell wall or membrane synthesis. Consequently, selection for antibiotic-sensitive mutants constitutes a useful means for isolating cell wall or membrane mutants.  相似文献   

8.
Diglyceride kinase was purified from membranes of Escherichia coli K-12 using organic solvents. The enzyme apoprotein depended on lipids, such as cardiolipin (diphosphatidylglycerol), phosphatidylcholine or 1-monooleoylglycerol, for activity with 1,2-dipalmitoylglycerol. Mixed brain cerebrosides and gangliosides as well as defined ganglioside fractions and synthetic lactocerebroside were devoid of lipid cofactor activity. However, all these glycosphingolipids were strong inhibitors of activation by phosphatidylcholine. When cardiolipin was used as lipid activator with the detergent, Triton X-100, as solubilizing agent, the addition of mixed or purified gangliosides first (at about 0.4 mM) resulted in additional activation, but higher ganglioside concentrations were strongly inhibitory. Both effects were absolutely dependent on the presence of lipid-bound sialic acid and were not given by cerebrosides, by free sialic acid or by sialyl-lactose. The stimulating and inhibitory effects of glycosphingolipids could also be demonstrated when 1-monooleoylglycerol was used as substrate, lipid activator and solubilizing agent at the same time. The modulation of kinase activity by glycosphingolipids is discussed at the level of lipid/protein interactions.  相似文献   

9.
The ability of N-acetylglucosamine to enhance catabolite repression by glucose was studied by using cultures grown on a combination of these substrates. Under these conditions, it was shown that two-thirds of the N-acetylglucosamine utilized was routed into dissimilatory pathways, whereas the remaining one-third was channeled into biosynthesis. It was established that over 50% of the N-acetylglucosamine assimilated was incorporated directly into amino sugar polymers. It was also shown that this exogenous supply of N-acetylglucosamine was in fact used preferentially over glucose as the precursor for amino sugar polymer biosynthesis. These findings provided support for the prediction that catabolite repression in Escherichia coli may be interrelated with certain reactions involved in amino sugar biosynthesis.  相似文献   

10.
Chlorate-resistant mutants corresponding to each known genetic locus (chlA, chlB, chlC, chlD, chlE) were isolated from Escherichia coli K-12. All these mutants showed decreased amounts of membrane-bound nitrate reductase, cytochrome b, and formic dehydrogenase, but all had normal succinic dehydrogenase activity. Proteins from the cytoplasmic membranes of these mutants were compared to those of the wild type-on polyacrylamide gels. The addition of nitrate to wild-type anaerobic cultures caused increased formation of three membrane proteins. These same proteins, along with one other, were missing in varying patterns in mutants altered at the different genetic loci. One of the missing proteins was found to be the enzyme nitrate reductase, although this protein was present in some mutants lacking nitrate reductase activity. None of the others has been identified.  相似文献   

11.
12.
Summary Strains of Escherichia coli have been selected, which contain mutations in the udk gene, encoding uridine kinase. The gene has been located on the chromosome as cotransducible with the his gene and shown to be responsible for both uridine and cytidine kinase activities in the cell.An additional mutation in the cdd gene (encoding cytidine deaminase) has been introduced, thus rendering the cells unable to metabolize cytidine. In these mutants exogenously added cytidine acts as inducer of nucleoside catabolizing enzymes indicating that cytidine per se is the actual inducer.When the udk, cdd mutants are grown on minimal medium the enzyme levels are considerably higher than in wild type cells. Evidence is presented indicating that the high levels are due to intracellular accumulation of cytidine, which acts as endogenous inducer.Abbreviations and Symbols FU 5-fluorouracil - FUR 5-fluorouridine - FUdR 5-fluoro-2'deoxyuridine - FCR 5-fluorocytidine - FCdR 5-fluorodeoxycytidine - THUR 3, 4, 5, 6-tetrahydrouridine - UMP uridine monophosphate - CMP cytidine monophosphate - dUMP deoxyuridine monophosphate. Genes coding for: cytidine deaminase - edd uridine phosphorylase - udp thymidine phosphorylase - tpp purmnucleoside phosphorylase - pup uridine kinase (=cytidine kinase) - udk UMP-pyrophosphorylase - upp. CytR regulatory gene for cdd, udp, dra, tpp, drm and pup Enzymes EC 2.4.2.1 Purine nucleoside phosphorylase or purine nucleoside: orthophosphate (deoxy)-ribosyltransferase - EC 2.4.2.4 thymidine phosphorylase or thymidine: orthophosphate deoxyribosyltransferase - EC 2.4.2.3 uridine phosphorylase or uridine: orthophosphate ribosyltransferase - EC 3.5.4.5 cytidine deaminase or (deoxy)cytidine aminohydrolase - EC 4.1.2.4 deoxyriboaldolase or 2-deoxy-D-ribose-5-phosphate: acetaldehydelyase - EC 2.4.2.9 UMP-pyrophosphorylase or UMP: pyrophosphate phosphoribosyltransferase - EC 2.7.1.48 uridine kinase or ATP: uridine 5-phosphotransferase  相似文献   

13.
Four hundred temperature-sensitive (ts) mutants were isolated by the (3)H-glycerol-3-phosphate membrane suicide procedure of Cronan, Ray, and Vagelos and were sorted into 13 groups by the rapid mapping procedures of Low. Recombination and complementation studies on representative members of each group suggested that the ts mutations of all 13 groups are present in genetically different complementation groups. Biochemical studies suggested that 10 of these ts mutations affected cell membrane synthesis. In this paper, the genetic data are presented in detail so that the limits of the Low rapid mapping procedures can be assessed, and in an accompanying paper the partial biochemical characterization of the ts mutations is described.  相似文献   

14.
Mutants of Escherichia coli sensitive to methylene blue and acridines   总被引:10,自引:0,他引:10  
  相似文献   

15.
16.
Turnover of phospholipids occurred continuously in a fatty acid auxotroph of Escherichia coli, but in the wild-type parent strain significant turnover occurred only under conditions where protein synthesis was inhibited but lipid synthesis continued. Both strains gave a stringent response of ribonucleic acid accumulation to amino acid starvation, but only in the wild type was lipid synthesis also inhibited. A revertant strain of the auxotroph resembled the wild type in this respect. The phospholipid that accumulates in the culture medium as a result of the lipid turnover appears to be part of a loosely bound low-density complex arising from the cell envelope.  相似文献   

17.
A rapid method for the isolation of large quantities of bacterial outer membrane is described. This cell envelope component was removed from plasmolyzed cells of Escherichia coli K-12 by lysozyme-ethylenediaminetetra-acetic acid treatment, aggregated by lowering the pH to 5.0, and recovered by centrifugation. Aggregates of membrane fragments were clearly identified in an electron microscope. A criterion of homogeneity of the preparation was obtained by isopycnic sucrose gradient centrifugation. A single band appeared at a density of 1.24 g/cc. The cytoplasmic membrane marker, succinate dehydrogenase activity, was 40 times lower in the outer membrane preparation than in complete cell envelope preparations. A rich activity was, however, found for the outer membrane marker, phospholipase A. The compositions of outer membranes from a transductant pair were compared. One transductant was a chain-forming, antibiotic-supersensitive envA strain, whereas the other contained the envA(+) allele. The envA strain showed a slightly modified protein pattern and a lower relative content of phosphatidylglycerol.  相似文献   

18.
The conjugally acquired deoxyribonucleic acid (DNA) of small, anucleate cells ("minicells") of a mutant strain of Escherichia coli K-12 was found to be predominantly associated with the bacterial membrane. Evidence from X-irradiation studies in vivo shows that there is no decrease in DNA-membrane association under conditions which reduce the DNA to one-sixth its original size and suggests the possibility of multiple DNA-membrane association sites. Preliminary enzymatic studies indicate the involvement of protein, DNA, and lipids in the membrane association of the DNA.  相似文献   

19.
Manganese is growth inhibitory for Escherichia coli. The manganese concentration required for inhibition is dependent upon the magnesium concentration of the medium. Mutants have been isolated which are partially resistant to manganese inhibition in both liquid and solid media. From conjugation experiments, the genetic locus for manganese-resistance, mng, appears to be between 34 and 37 min on the E. coli genetic map. Experiments with radioactive (28)Mg lead to the tentative conclusion that the mng mutants are altered in the inhibition constant for manganese as a competitive inhibitor for the mangnesium accumulation system. Once high manganese enters the cells, it displaces internal magnesium and leads to a net cellular loss and hence growth inhibition. The mng mutants are somewhat less subject to manganese-induced magnesium loss under comparable conditions than are manganese-sensitive wild-type cells.  相似文献   

20.
The composition of the cell envelope of a heptose-deficient lipopolysaccharide mutant of Escherichia coli, GR467, was studied after fractionation into its outer and cytoplasmic membrane components by means of sucrose density gradient centrifugation. The outer membrane of GR467 had a lower density than that of its parent strain, CR34. Analysis of the fractionated membranes of GR467 indicated that the phospholipid-to-protein ratio had increased 2.4-fold in the outer membrane. The ratio in the mutant cytoplasmic membrane was also increased, although to a lesser extent. By employing a third parameter, the lipid A content of the outer membrane, it was found that the observed phospholipid-to-protein change in the outer membrane was due predominantly to a decrease in the relative amount of protein. This decrease in protein was particularly significant, since it was concomitant with a 68% decrease in the lipid A recovered in the outer membrane of GR467 relative to the lipid A recovered in the outer membrane of CR34. Similar findings were observed in a second heptose-deficient mutant of E. coli, RC-59. The apparent protein deficiency in GR467 was further studied by subjecting solubilized envelope proteins to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was found that major envelope proteins which were localized in the outer membrane were greatly diminished in GR467. Two revertants of GR467 with the wild-type amounts of heptose had wild-type relative levels of protein in their outer membranes. A partial heptose revertant had a relative level of protein in its outer membrane between those of the mutant and wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号