首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine whether administration of a catalytic antioxidant, Mn(III) tetrakis(N,N-diethylimidazolium-2-yl) porphyrin, AEOL10150, reduces the severity of long-term lung injury induced by fractionated radiation (RT). Fisher 344 rats were randomized into five groups: RT+AEOL10150 (2.5 mg/kg BID), AEOL10150 (2.5 mg/kg BID) alone, RT+AEOL10150 (5 mg/kg BID), AEOL10150 (5 mg/kg BID) alone and RT alone. Animals received five 8 Gy fractions of RT to the right hemithorax. AEOL10150 was administered 15 min before RT and 8 h later during the period of RT treatment (5 days), followed by subcutaneous injections for 30 days, twice daily. Lung histology at 26 weeks revealed a significant decrease in lung structural damage and collagen deposition in RT+AEOL10150 (5 mg/kg BID) group, in comparison to RT alone. Immunohistochemistry studies revealed a significant reduction in tissue hypoxia (HIF1α, CAIX), angiogenic response (VEGF, CD-31), inflammation (ED-1), oxidative stress (8-OHdG, 3-nitrotyrosine) and fibrosis pathway (TGFβ1, Smad3, p-Smad2/3), in animals receiving RT+AEOL10150 (5 mg/kg BID). Administration of AEOL10150 at 5 mg/kg BID during and after RT results in a significant protective effect from long-term RT-induced lung injury. Low dose (2.5 mg/kg BID) delivery of AEOL10150 has no beneficial radioprotective effects.  相似文献   

2.
New therapeutics designed as rescue treatments after toxic gas injury such as from chlorine (Cl(2)) are an emerging area of interest. We tested the effects of the metalloporphyrin catalytic antioxidant AEOL10150, a compound that scavenges peroxynitrite, inhibits lipid peroxidation, and has SOD and catalase-like activities, on Cl(2)-induced airway injury. Balb/C mice received 100ppm Cl(2) gas for 5 min. Four groups were studied: Cl(2) only, Cl(2) followed by AEOL10150 1 and 9 h after exposure, AEOL10150 only, and control. Twenty-four hours after Cl(2) gas exposure airway responsiveness to aerosolized methacholine (6.25-50mg/ml) was measured using a small-animal ventilator. Bronchoalveolar lavage (BAL) was performed to assess airway inflammation and protein. Whole lung tissue was assayed for 4-hydroxynonenal. In separate groups, lungs were collected at 72 h after Cl(2) injury to evaluate epithelial cell proliferation. Mice exposed to Cl(2) showed a significantly higher airway resistance compared to control, Cl(2)/AEOL10150, or AEOL10150-only treated animals in response to methacholine challenge. Eosinophils, neutrophils, and macrophages were elevated in BAL of Cl(2)-exposed mice. AEOL10150 attenuated the increases in neutrophils and macrophages. AEOL10150 prevented Cl(2)-induced increase in BAL fluid protein. Chlorine induced an increase in the number of proliferating airway epithelial cells, an effect AEOL10150 attenuated. 4-Hydroxynonenal levels in the lung were increased after Cl(2) and this effect was prevented with AEOL10150. AEOL10150 is an effective rescue treatment for Cl(2)-induced airway hyperresponsiveness, airway inflammation, injury-induced airway epithelial cell regeneration, and oxidative stress.  相似文献   

3.
Our previous studies and other published reports on the chemical warfare agent sulfur mustard (SM) and its analog 2-chloroethyl ethyl sulfide (CEES) have indicated a role of oxidative stress in skin injuries caused by these vesicating agents. We examined the effects of the catalytic antioxidant AEOL 10150 in the attenuation of CEES-induced toxicity using our established skin injury models (skin epidermal cells and SKH-1 hairless mice) to validate the role of oxidative stress in the pathophysiology of mustard vesicating agents. Treatment of mouse epidermal JB6 and human HaCaT cells with AEOL 10150 (50 μM) 1 h post-CEES exposure resulted in significant (p < 0.05) reversal of CEES-induced decreases in both cell viability and DNA synthesis. Similarly, AEOL 10150 treatment 1 h after CEES exposure attenuated CEES-induced DNA damage in these cells. Similar AEOL 10150 treatments also caused significant (p < 0.05) reversal of CEES-induced decreases in cell viability in normal human epidermal keratinocytes. Cytoplasmic and mitochondrial reactive oxygen species measurements showed that AEOL 10150 treatment drastically ameliorated the CEES-induced oxidative stress in both JB6 and HaCaT cells. Based on AEOL 10150 pharmacokinetic studies in SKH-1 mouse skin, mice were treated with a topical formulation plus subcutaneous injection (5 mg/kg) of AEOL 10150 1 h after CEES (4 mg/mouse) exposure and every 4 h thereafter for 12 h. This AEOL 10150 treatment regimen resulted in over 50% (p < 0.05) reversal of CEES-induced skin bi-fold and epidermal thickness, myeloperoxidase activity, and DNA oxidation in mouse skin. Results from this study demonstrate the potential therapeutic efficacy of AEOL 10150 against CEES-mediated cutaneous lesions, supporting AEOL 10150 as a medical countermeasure against SM-induced skin injuries.  相似文献   

4.
The development of normal lung tissue toxicity after radiation exposure results from multiple changes in cell signaling and communication initiated at the time of the ionizing event. The onset of gross pulmonary injury is preceded by tissue hypoxia and chronic oxidative stress. We have previously shown that development of debilitating lung injury can be mitigated or prevented by administration of AEOL10150, a potent catalytic antioxidant, 24h after radiation. This suggests that hypoxia-mediated signaling pathways may play a role in late radiation injury, but the exact mechanism remains unclear. The purpose of this study was to evaluate changes in the temporal expression of hypoxia-associated genes in irradiated mouse lung and determine whether AEOL10150 alters expression of these genes. A focused oligo array was used to establish a hypoxia-associated gene expression signature for lung tissue from sham-irradiated or irradiated mice treated with or without AEOL10150. Results were further verified by RT-PCR. Forty-four genes associated with metabolism, cell growth, apoptosis, inflammation, oxidative stress, and extracellular matrix synthesis were upregulated after radiation. Elevated expression of 31 of these genes was attenuated in animals treated with AEOL10150, suggesting that expression of a number of hypoxia-associated genes is regulated by early development of oxidative stress after radiation. Genes identified herein could provide insight into the role of hypoxic signaling in radiation lung injury, suggesting novel therapeutic targets, as well as clues to the mechanism by which AEOL10150 confers pulmonary radioprotection.  相似文献   

5.
Radiation therapy (RT) is an important therapeutic modality in the treatment of thoracic tumors. The maximum doses to these tumors are often limited by the radiation tolerance of lung tissues. Lung injury from ionizing radiation is believed to be a consequence of oxidative stress and a cascade of cytokine activity. Superoxide dismutase (SOD) is a key enzyme in cellular defenses against oxidative damage. The objective of this study was to determine whether the SOD mimetic AEOL 10113 [manganese (III) mesotetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP(5+))] increases the tolerance of lung to ionizing radiation. AEOL 10113 was able to significantly reduce the severity of RT-induced lung injury. This was strongly supported with histopathology results and measurements of collagen deposition (hydroxyproline content). There was a significant reduction in the plasma level of the profibrogenic cytokine transforming growth factor-beta (TGF-beta) in the group of rats receiving RT + AEOL 10113. In conclusion, the novel SOD mimetic, AEOL 10113, demonstrates a significant protective effect from radiation-induced lung injury.  相似文献   

6.
Reactive oxygen species play a role in the response of brain to ischemia. The effects of metalloporphyrin catalytic antioxidants (AEOL 10113 and AEOL 10150) were examined after murine middle cerebral artery occlusion (MCAO). Ninety minutes after reperfusion from 90 min MCAO in the rat, AEOL 10113, AEOL 10150, or vehicle were given intracerebroventricularly. AEOL 10113 and AEOL 10150 similarly reduced infarct size (35%) and neurologic deficit. AEOL 10113 caused behavioral side effects at twice the neuroprotective dose while AEOL 10150 required a 15-fold increase from the neuroprotective dose to cause behavioral changes. AEOL 10150, given 6 h after 90 min MCAO, reduced total infarct size by 43% without temperature effects. Brain AEOL 10150 elimination t(1/2) was 10 h. In the mouse, intravenous AEOL 10150 infusion post-MCAO reduced both infarct size (25%) and neurologic deficit. Brain AEOL 10150 uptake, greater in the ischemic hemisphere, was dose- and time-dependent. AEOL 10150 had direct effects on proteomic events and ameliorated changes caused by ischemia. In primary mixed neuronal/glial cultures exposed to 2 h of O(2)/glucose deprivation, AEOL 10150 reduced lactate dehydrogenase release dose-dependently and selectively preserved aconitase activity in concentrations consistent with neuroprotection in vivo. AEOL 10150 is an effective neuroprotective compound offering a wide therapeutic window with a large margin of safety against adverse behavioral side effects.  相似文献   

7.
Hemorrhage results in excessive production of superoxide that is associated with severe lung injury. We examined whether the superoxide dismutase (SOD) mimetic manganese(III) mesotetrakis (di-N-ethylimidazole) porphyrin (AEOL 10150) could attenuate this lung injury and whether extracellular (EC)-SOD-deficient mice would have increased hemorrhage-induced lung injury. Compared with wild-type mice, EC-SOD-deficient mice had increased lung neutrophil accumulation, a 3.9-fold increase in myeloperoxidase activity, a 1.5-fold increase in nuclear factor (NF)-kappaB activation, and a 1.5-fold increase in lipid peroxidation 1 h after hemorrhage. Pretreatment with AEOL 10150 did not attenuate neutrophil accumulation but significantly reduced NF-kappaB activation and lipid peroxidation in both wild-type and EC-SOD-deficient mice. The increase in hemorrhage-induced neutrophil accumulation in the lungs of EC-SOD-deficient mice suggests that EC-SOD might play a role in mediating neutrophil recruitment to the lung.  相似文献   

8.
Cigarette smokers experience airway inflammation and epithelial damage, the mechanisms of which are unknown. One potential cause may be free radicals either in tobacco smoke or produced during persistent inflammation. Inflammation may also be a driving force to cause airway epithelium to undergo changes leading to squamous cell metaplasia. To test whether tobacco smoke-induced inflammation could be reduced by a catalytic antioxidant, manganese(III)meso-tetrakis(N,N'-diethyl-1,3-imidazolium-2-yl) porphyrin (AEOL 10150) was given by intratracheal instillation to rats exposed to filtered air or tobacco smoke. Exposure to tobacco smoke for 2 d or 8 weeks (6 h/d, 3 d/week) significantly increased the number of cells recovered by bronchoalveolar lavage (BAL). AEOL 10150 significantly decreased BAL cell number in tobacco smoke-treated rats. Significant reductions in neutrophils were noted at 2 d and macrophages at 8 weeks. Lymphocytes were significantly reduced by AEOL 10150 at both time points. Squamous cell metaplasia following 8 weeks of tobacco smoke exposure was 12% of the total airway epithelial area in animals exposed to tobacco smoke without AEOL 10150, compared with 2% in animals exposed to tobacco smoke, but treated with AEOL 10150 (p <.05). We conclude that a synthetic catalytic antioxidant decreased the adverse effects of exposure to tobacco smoke.  相似文献   

9.
Oxidative stress is a major source of injury from cerebral ischemia and reperfusion. We hypothesized that a catalytic antioxidant AEOL 10150 [manganese (III) meso-tetrakis (di-N-ethylimidazole) porphyrin] would attenuate changes in brain gene expression in a mouse model of transient middle cerebral artery occlusion (MCAO). C57BL/6J mice were subjected to either sham surgery or 60 min of right MCAO. AEOL 10150 or phosphate-buffered saline was given intravenously 5 min after onset of reperfusion (n = 6 per group). Six hours later, parenchyma within the MCA distribution was harvested. RNA from the six brains in each group was pooled and mRNA expression determined using an Affymetrix murine MG_U74A v. 2.0 expression microarray. Each experiment was performed three times. The largest changes in expression occurred in stress response and inflammatory genes such as heat shock protein, interleukin-6, and macrophage inflammatory protein-2. Treatment with AEOL 10150 attenuated only the increase in expression of inflammatory genes. This suggests that AEOL 10150 protects brain by attenuating the immune response to ischemia and reperfusion.  相似文献   

10.
Status epilepticus is a common manifestation of nerve agent toxicity and represents a serious medical emergency with high rates of mortality and neurologic injury in those that survive. The aim of the current study was to determine if targeting oxidative stress with the catalytic antioxidant, AEOL10150, would reduce pilocarpine-induced mortality and attenuate neuronal death and neuroinflammation. We found that treatment with AEOL10150 in conjunction with scopolamine and diazepam following pilocarpine-induced SE was able to significantly reduce mortality compared to treatment with just scopolamine and diazepam. Mortality was further reduced when AEOL10150 was used in conjunction with atropine and diazepam which is considered the standard of care for nerve agent exposures. Both treatment paradigms offered significant protection against SE-induced oxidative stress. Additionally, treatment with scopolamine, AEOL10150 and diazepam attenuated SE-induced neuronal loss and neuroinflammation. Taken together, the data suggest that pharmacological targeting of oxidative stress can improve survival and attenuate secondary neurological damage following SE induced by the nerve agent surrogate pilocarpine.  相似文献   

11.
Endothelin-1 is a potent vasoconstrictor and mitogenic peptide involved in the regulation of vasomotor tone and maintenance of blood pressure. Oxidative stress activates the endothelin system, and is implicated in pulmonary and cardiovascular diseases including hypertension, congestive heart failure, and atherosclerosis. Superoxide dismutase mimetics designed with the aim of treating diseases that involve reactive oxygen species in their pathophysiology may exert a hypotensive effect, but effects on the endothelin system are unknown. Our objective was to determine the effect of the superoxide dismutase mimetic AEOL 10150 on the basal endothelin system in vivo. Male Fischer-344 rats were injected subcutaneously with 0, 2 or 5 mg/kg body weight of AEOL 10150 in saline. Plasma oxidative stress markers and endothelins (bigET-1, ET-1, ET-2, ET-3) as well as lung and heart endothelin/nitric oxide system gene expressions were measured using HPLC-Coularray, HPLC-Fluorescence and RT-PCR respectively. AEOL 10150 reduced (p<0.05) the circulating levels of isoprostane (-25%) and 3-nitrotyrosine (-50%) measured in plasma 2h and 24h after treatment, confirming delivery of a physiologically-relevant dose and the potent antioxidant activity of the drug. The reduction in markers of oxidative stress coincided with sustained 24h decrease (p<0.05) of plasma levels of ET-1 (-50%) and ET-3 (-10%). Expression of preproET-1 and endothelin converting enzyme-1 mRNA were not altered significantly in the lungs. However preproET-1 (not significant) and ECE-1 mRNA (p<0.05) were increased (10–25%) in the heart. Changes in the lungs included decrease (p<0.05) of mRNA for the ET-1 clearance receptor ETB and the vasoconstriction-signaling ETA receptor (-30%), and an early surge of inducible nitric oxide synthase expression followed by sustained decrease (-40% after 24 hours). The results indicate that interception of the endogenous physiological flux of reactive nitrogen species and reactive oxygen species in rats impacts the endothelin/nitric oxide system, supporting a homeostatic relationship between those systems.  相似文献   

12.
《Free radical research》2013,47(10):1259-1268
Abstract

Background. The objective of the present study was to determine whether single administration of the antioxidant enzyme bovine superoxide dismutase (bSOD) after radiation therapy (RT) mitigates development of pulmonary toxicity in rats. Methods. Female F344 rats (n = 60) were divided among six experimental groups: (1) RT, single dose of 21 Gy to the right hemithorax; (2) RT + 5 mg/kg bSOD; (3) RT + 15 mg/kg bSOD; (4) No RT; (5) sham RT + 5 mg/kg bSOD; and (6) sham RT + 15 mg/kg bSOD. A single subcutaneous injection of bSOD (5 or 15 mg/kg) was administered 24 h post-radiation. The effects of bSOD on radiation-induced lung injury were assessed by measurement of body weight, breathing frequency, and histopathological changes. Immunohistochemistry was used to evaluate oxidative stress (8-OHdG+, NOX4+, nitrotyrosine+, and 4HNE+ cells), macrophage activation (ED1+), and expression of profibrotic transforming growth factor-β or TGF-β in irradiated tissue. Results. Radiation led to an increase in all the evaluated parameters. Treatment with 15 mg/kg bSOD significantly decreased levels of all the evaluated parameters including tissue damage and breathing frequency starting 6 weeks post-radiation. Animals treated with 5 mg/kg bSOD trended toward a suppression of radiation-induced lung damage but did not reach statistical significance. Conclusions. The single application of bSOD (15 mg/kg) ameliorates radiation-induced lung injury through suppression of reactive oxygen species/reactive nitrogen species or ROS/RNS-dependent tissue damage.  相似文献   

13.
Development of radiation therapy (RT)-induced lung injury is associated with chronic production of reactive oxygen and nitrogen species (ROS/RNS). MnTE-2-PyP5+ is a catalytic Mn porphyrin mimic of SOD, already shown to protect lungs from RT-induced injury by scavenging ROS/RNS. The purpose of this study was to compare MnTE-2-PyP5+ with a newly introduced analogue MnTnHex-2-PyP5+, which is expected to be a more effective radioprotector due to its lipophilic properties. This study shows that Fischer rats which were irradiated to their right hemithorax (28 Gy) have less pulmonary injury as measured using breathing frequencies when treated with daily subcutaneous injections of MnTE-2-PyP5+ (3 and 6 mg/kg) or MnTnHex-2-PyP5+ (0.3, 0.6, or 1.0 mg/kg) for 2 weeks after RT. However, at 16 weeks post-RT, only MnTE-2-PyP5+ at a dose of 6 mg/kg is able to ameliorate oxidative damage, block activation of HIF-1alpha and TGF-beta, and impair upregulation of CA-IX and VEGF. MnTnHex-2-PyP5+ at a dose of 0.3 mg/kg is effective only in reducing RT-induced TGF-beta and CA-IX expression. Significant loss of body weight was observed in animals receiving MnTnHex-2-PyP5+ (0.3 and 0.6 mg/kg). MnTnHex-2-PyP5+ has the ability to dissolve lipid membranes, causing local irritation/necrosis at injection sites if given at doses of 1 mg/kg or higher. In conclusion, both compounds show an ability to ameliorate lung damage as measured using breathing frequencies and histopathologic evaluation. However, MnTE-2-PyP5+ at 6 mg/kg proved to be more effective in reducing expression of key molecular factors known to play an important role in radiation-induced lung injury.  相似文献   

14.
We investigated the protective and therapeutic effects of molsidomine (MOL) in a rat model of whole brain radiotherapy (RT). Forty female rats were divided into five groups of eight: group 1, control; group 2, 15 Gy single dose RT (RT); group 3, 4 mg/kg MOL treated for 5 days (MOL); group 4, 4 mg/kg MOL for 5 days, 10 days after RT treatment (RT + MOL); group 5, 4 mg/kg MOL treatment for 5 days before RT treatment and for 5 days after RT treatment (MOL + RT). All rats were sacrificed on day 16. Neurodegenerative changes in the brain and tissue levels of oxidants and antioxidants were evaluated. The oxidative parameters were increased and antioxidant status was decreased in group RT compared to groups MOL + RT and RT + MOL. Histopathological examination showed that treatment with MOL after RT application and treatment with MOL before RT treatment decreased neuronal degeneration. No difference in neuronal appearance was found between groups RT + MOL and MOL + RT. MOL treatment protected the nervous system of rats and may be a treatment option for preventing RT induced neural injury.  相似文献   

15.
We tested the preventive effects of catalase, an enzymatic scavenger of hydrogen peroxide, or dimethyl sulfoxide (DMSO), a hydroxyl radical scavenger, on intravenous alloxan-induced lung edema in four groups of pentobarbital sodium-anesthetized, ventilated dogs for 3 h: saline (20 ml.kg-1.h-1) infusion alone (n = 5), alloxan (75 mg/kg) + saline infusion (n = 5), catalase (150,000 U/kg) + alloxan + saline infusion (n = 5), or DMSO (4 mg/kg) + alloxan + saline infusion (n = 5). Catalase or DMSO significantly prevented the increase in plasma thromboxane B2 and 6-keto-prostaglandin F1 alpha over 3 h after alloxan and the accumulation of extravascular lung water after 3 h [3.95 +/- 0.52 (SE) g/g with catalase, 3.06 +/- 0.42 g/g with DMSO] but not early pulmonary arterial pressor response. An electron microscopic study indicated that catalase or DMSO significantly reduced the endothelial cellular damages after alloxan. These findings strongly suggest that hydrogen peroxide and hydroxyl radical are major mediators responsible for intravenous alloxan-induced edematous lung injury in anesthetized ventilated dogs.  相似文献   

16.
While surfactant (SF) therapy alone improves respiratory distress syndrome (RDS)-associated gas exchange and lung stability, absence of anti-inflammatory proteins limits efficacy with respect to inflammation. Clara cell secretory protein (CC10), deficient in preterm infants, prevents SF degradation and has anti-inflammatory properties. In this study, intratracheal recombinant human (rh) CC10 (Claragen)-augmented SF (Survanta, Ross) therapy was examined in a premature lamb model of RDS with respect to inflammation and kinetic dose-response profiles. Preterm lambs (n = 24; gestational age: 126 +/- 3 days) were delivered via cesarean section, sedated, ventilated, and randomized into groups: 100 mg/kg SF, 100 mg/kg SF followed by 0.5 mg/kg rhCC10, 100 mg/kg SF followed by 1.5 mg/kg rhCC10, and 100 mg/kg SF followed by 5.0 mg/kg rhCC10. Arterial blood chemistry and lung mechanics were monitored; lungs were lavaged and snap-frozen after 4 h. TNF-alpha, IL-8 in plasma; TNF-alpha, IL-6, IL-8, myeloperoxidase in lung; and rhCC10 in plasma, urine, bronchoalveolar lavage, and lung were analyzed. Improvement in compliance, peak inspiratory pressure, and ventilatory efficiency index were greatest (P < 0.05) with SF + 5.0 mg/kg rhCC10. Plasma, urine, bronchoalveolar lavage, and lung [rhCC10] (where brackets denote concentration) increased (P < 0.01) with dose. Plasma [IL-8] was lower (P < 0.05) with rhCC10 than SF alone. Treatment with at least 1.5 mg/kg rhCC10 resulted in lower (P < 0.05) lung [TNF-alpha], [IL-8], and [myeloperoxidase]; SF + 1.5 mg/kg rhCC10 group had lower (P < 0.05) lung [IL-6], compared with all other groups. Compared with SF alone, SF augmented with at least 1.5 mg/kg rhCC10 decreased RDS-induced lung and systemic inflammation. Given that inflammation may lead to functional compromise, these data suggest that early intervention with rhCC10 may enhance SF therapy and warrant longer duration studies to determine its role to decrease long-term complications of ventilator management.  相似文献   

17.
We have shown earlier that H(2)S acts as a mediator of inflammation. In this study, we have investigated the involvement of substance P and neurogenic inflammation in H(2)S-induced lung inflammation. Intraperitoneal administration of NaHS (1-10 mg/kg), an H(2)S donor, to mice caused a significant increase in circulating levels of substance P in a dose-dependent manner. H(2)S alone could also cause lung inflammation, as evidenced by a significant increase in lung myeloperoxidase activity and histological evidence of lung injury. The maximum effect of H(2)S on substance P levels and on lung inflammation was observed 1 h after NaHS administration. At this time, a significant increase in lung levels of TNF-alpha and IL-1beta was also observed. In substance P-deficient mice, the preprotachykinin-A knockout mice, H(2)S did not cause any lung inflammation. Furthermore, pretreatment of mice with CP-96345 (2.5 mg/kg ip), an antagonist of the neurokinin-1 (NK(1)) receptor, protected mice against lung inflammation caused by H(2)S. However, treatment with antagonists of NK(2), NK(3), and CGRP receptors did not have any effect on H(2)S-induced lung inflammation. Depleting neuropeptide from sensory neurons by capsaicin (50 mg/kg sc) significantly reduced the lung inflammation caused by H(2)S. In addition, pretreatment of mice with capsazepine (15 mg/kg sc), an antagonist of the transient receptor potential vanilloid-1, protected mice against H(2)S-induced lung inflammation. These results demonstrate a key role of substance P and neurogenic inflammation in H(2)S-induced lung injury in mice.  相似文献   

18.
To investigate how fast and to what extent superior vena caval hypertension (SVCH) increases lung water in acute increased-permeability state, we studied the time course of lung water accumulation for 3 h in anesthetized dogs under different treatments: 1) controls without intervention (5 dogs), 2) SVCH alone (5 dogs), 3) mild lung microvascular injury induced by low-dose alloxan (75 mg/kg) alone (5 dogs), and 4) SVCH coupled with low-dose alloxan (5 dogs). Neither low-dose alloxan alone nor SVCH alone [superior vena caval pressure (Psvc) = 11.0 +/- 3.1 (SD) mmHg] increased lung water significantly. The SVCH coupled with low-dose alloxan (Psvc = 11.3 +/- 2.7 mmHg) doubled extravascular lung thermal volume measured by the thermal-dye dilution technique within 1 h (5.3 +/- 0.9 ml/kg at base line and 10.9 +/- 4.7 ml/kg at 1 h), then remained unchanged (12.5 +/- 5.7 ml/kg at 3 h). This increase in lung water was confirmed by gravimetric method (5.69 +/- 1.71 g/g blood-free dry wt). We conclude that SVCH is one of the factors that may promote lung water accumulation in increased-permeability state.  相似文献   

19.
NT-702 (parogrelil hydrochloride, NM-702), 4-bromo-6-[3-(4-chlorophenyl)propoxy]-5-[(pyridin-3-ylmethyl)amino]pyridazin-3(2H)-one hydrochloride, a novel phosphodiesterase (PDE) inhibitor synthesized as a potent vasodilatory and antiplatelet agent, is being developed for the treatment of intermittent claudication (IC) in patients with peripheral arterial disease. We assessed the efficacy of NT-702 in an experimental IC model as compared with cilostazol and additionally investigated the pharmacological property in vitro and ex vivo. NT-702 selectively inhibited PDE3 (IC(50)=0.179 and 0.260 nM for PDE3A and 3B) more potently than cilostazol (IC(50)=231 and 237 nM for PDE3A and 3B) among recombinant human PDE1 to PDE6. NT-702 inhibited in vitro human platelet aggregation induced by various agonists (IC(50)=11 to 67 nM) and phenylephrine-induced rat aortic contraction (IC(50)=24 nM). Corresponding results for cilostazol were 4.1 to 17 microM and 1.0 microM, respectively. NT-702 (3 mg/kg or more) significantly inhibited ex vivo rat platelet aggregation after a single oral dose. For cilostazol, 300 mg/kg was effective. In a rat femoral artery ligation model, NT-702 at 5 and 10 mg/kg repeated oral doses twice a day (BID) for 13 days significantly improved the reduced walking distance while the lowered plantar surface temperature was improved at 2.5 mg/kg and more. Cilostazol also improved the walking distance and surface temperature at 300 mg/kg BID but significant difference was only observed for surface temperature on day 8. These results suggest that NT-702 can be expected to have therapeutic advantage for IC.  相似文献   

20.
Our purpose was to determine whether lipid peroxidation of lung tissue, a reflection of O2 radical injury, occurs with endotoxin, and whether the degree of tissue change corresponds with the degree of increased protein permeability. Unanesthetized adult sheep with lung lymph fistulas were given Escherichia coli endotoxin at a dose of 2 micrograms/kg (n = 34). Tissue lipid peroxidation was measured using the thiobarbituric acid assay for malondialdehyde (MDA). The MDA content of lung tissue in nanomoles per gram increased from a control value of 48 +/- 8 to 98 +/- 18 at 5 h postendotoxin (2 micrograms/kg), whereas lung lymph protein transport (Cp), was increased 3- to 4-fold. The MDA content returned to base line with Cp by 24 h postendotoxin. Six sheep given endotoxin were pretreated with 12.5 mg/kg of ibuprofen, and six were infused with dimethylthiourea (DMTU) 0.75 g/kg. With ibuprofen, Cp was only increased 2.5- to 3-fold and MDA was increased to 69 +/- 15 nmol/g. With DMTU, the increase in Cp was comparable to that with endotoxin alone, as was the MDA of lung tissue with a value of 92 +/- 12 nmol/g. The correlation of tissue MDA with Cp in all animals was 0.83. We conclude that lipid peroxidation occurs in lung tissue after a moderately severe endotoxin injury with the degree of change corresponding to the degree of increased Cp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号