首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The metabolism of collagen in male rats by treatment with bleomycin was studied following the injection of [3H]proline and the determination of specific and total activity of [3H]hydroxyproline in skin collagen fractions and urine. In the case of the bleomycin-treated animals, there was found to be an increase in the neutral salt soluble collagen content with no change in insoluble collagen content as compared to the control group. The specific and total radioactivity of [3H]hydroxyproline in soluble and insoluble collagen fractions was also increased. Examination of [3H]hydroxyproline activity in soluble and insoluble collagen showed that the conversion of soluble to insoluble collagen was improved by the bleomycin-treated group. It was found that this was accompanied by a decrease in urinary excretion of total hydroxyproline and [3H]hydroxyproline during the first 12 hr after the administration of [3H]proline. Therefore, the results of the present investigation clearly indicate that the maturation of soluble to insoluble collagen is promoted and accompanied by a decrease in the catabolism of soluble collagen in the bleomycin-treated animals. In addition, administration of bleomycin increased the synthesis of collagen.  相似文献   

2.
CL (cardiolipin) is a key phospholipid involved in ATP generation. Since progression through the cell cycle requires ATP we examined regulation of CL synthesis during S-phase in human cells and investigated whether CL or CL synthesis was required to support nucleotide synthesis in S-phase. HeLa cells were made quiescent by serum depletion for 24 h. Serum addition resulted in substantial stimulation of [methyl-(3)H]thymidine incorporation into cells compared with serum-starved cells by 8 h, confirming entry into the S-phase. CL mass was unaltered at 8 h, but increased 2-fold by 16 h post-serum addition compared with serum-starved cells. The reason for the increase in CL mass upon entry into S-phase was an increase in activity and expression of CL de novo biosynthetic and remodelling enzymes and this paralleled the increase in mitochondrial mass. CL de novo biosynthesis from D-[U-(14)C]glucose was elevated, and from [1,3-(3)H]glycerol reduced, upon serum addition to quiescent cells compared with controls and this was a result of differences in the selection of precursor pools at the level of uptake. Triascin C treatment inhibited CL synthesis from [1-(14)C]oleate but did not affect [methyl-(3)H]thymidine incorporation into HeLa cells upon serum addition to serum-starved cells. Barth Syndrome lymphoblasts, which exhibit reduced CL, showed similar [methyl-(3)H]thymidine incorporation into cells upon serum addition to serum-starved cells compared with cells from normal aged-matched controls. The results indicate that CL de novo biosynthesis is up-regulated via elevated activity and expression of CL biosynthetic genes and this accounted for the doubling of CL seen during S-phase; however, normal de novo CL biosynthesis or CL itself is not essential to support nucleotide synthesis during entry into S-phase of the human cell cycle.  相似文献   

3.
1. De novo sterol biosynthesis in the sponges Tethya aurantia and Aplysina fistularis was investigated, using sodium [5,5-3H]-mevalonate, [1-3H]-farnesol and [3-3H]-squalene. [3-3H]-Squalene was found to be the best precursor for demonstrating de novo sterol biosynthesis in a wider range of sponges. 2. By feeding [3-3H]-squalene and using cell-free techniques, the de novo sterol biosynthesis was established in 18 sponges belonging to nine orders. Among these sponges were Axinella polypoides and Axinella verrucosa which had previously been thought to be incapable of de novo sterol biosynthesis based on work with radiolabeled lanosterol, cycloartenol, mevalonate, and acetate. 3. In contrast to earlier assumptions, it is likely that all sponges are capable of de novo sterol biosynthesis.  相似文献   

4.
Previously, we observed increased plasma arginine (ARG) concentrations after glutamine (GLN)-enriched diets, in combination with clinical benefits. GLN delivers nitrogen for ARG synthesis, and the present study was designed to quantify the interorgan relationship of exogenous L-GLN or GLN dipeptide, by enteral or parenteral route, contributing to intestinal citrulline (CIT) and renal de novo ARG synthesis in mice. To study this, we used a multicatheterized mouse model with Swiss mice (n = 43) in the postabsorptive state. Stable isotopes were infused into the jugular vein or into the duodenum {per group either free L-[2,(15)N]GLN or dipeptide L-ALA-L-[2,(15)N]GLN, all with L-[ureido-(13)C-(2)H(2)]CIT and L-[guanidino-(15)N(2)-(2)H(2)]ARG} to establish renal and intestinal ARG and CIT metabolism. Blood flow was measured using (14)C-para-aminohippuric acid. Net intestinal CIT release, renal uptake of CIT, and net renal ARG efflux was found, as assessed by arteriovenous flux measurements. Quantitatively, more de novo L-[2,(15)N]CIT was produced when free L-[2,(15)N]GLN was given than when L-ALA-L-[2,(15)N]GLN was given, whereas renal de novo L-[2,(15)N]ARG was similar in all groups. In conclusion, the intestinal-renal axis is hereby proven in mice in that L-[2,(15)N]GLN or dipeptide were both converted into de novo renal L-[2,(15)N]ARG; however, not all was derived from intestinal L-[2,(15)N]CIT production. In this model, the feeding route and form of GLN did not influence de novo renal ARG production derived from GLN.  相似文献   

5.
An increase in collagen synthesis by hepatic parenchymal cells (hepatocytes) was observed during 8 days in primary culture by the quantification of total [3H]hydroxyproline as a marker of total collagen synthesis and the ratio of [3H]hydroxyproline in the high-molecular-weight fraction to total [3H]hydroxyproline as a marker of collagen degradation after incubation of the cells with [3H]proline for 24 h. Type analysis of the collagen produced by the cells after 8 days in culture showed the presence of type I and type III collagens in addition to the components corresponding to type IV and type V (alpha A and alpha B) collagens. Only the latter two types were found in the collagens produced by the cells after 2 days in primary culture. The purity of the hepatocytes inoculated was 97%, and the majority of the contaminating small cells were erythrocytes. The rate of serum albumin synthesis, which is a typical function of the hepatocytes, was constant or increased during the culture period. Immuno-electron microscopic observation indicated the production of type I collagen by the hepatocytes after 8 days in primary culture. These results are explained only by the activation of collagen synthesis in the day-8 hepatocytes in primary culture.  相似文献   

6.
The effect of a single dose (50 mg/kg body weight) of 3-methylcholanthrene on de novo phosphatidylcholine biosynthetic activities in rat liver was studied both in a cell-free system and with slice experiments. 3-Methylcholanthrene caused a significant depression of either [methyl-14C]choline or [2-(3)H]glycerol incorporation into phosphatidylcholine when the precursor was incubated with liver slices. At the same time, there occurred a significant accumulation of radioactivity in either cholinephosphate or diacylglycerol molecule from [14C]choline or [3H]glycerol, respectively, suggesting that 3-methylcholanthrene could cause an inhibitory effect on hepatic phosphatidylcholine synthesis at the cholinephosphotransferase or/and cholinephosphate cytidylyltransferase step. Subsequent studies, where the activities of the three enzymes involved in de novo phosphatidylcholine synthesis were compared between control and 3-methylcholanthrene-pretreated rat liver subcellular fractions, demonstrated that the cholinephosphotransferase step could be the site of inhibition by 3-methylcholanthrene. On the other hand, 3-methylcholanthrene caused a significant induction of choline kinase activity in a time-dependent manner and, at the same time, the cholinephosphate pool size in liver cytosol was enlarged 2-3-fold when compared to the respective control. The overall results suggested strongly that 3-methylcholanthrene causes the counteractive effects on the de novo phosphatidylcholine biosynthesis, induction of choline kinase activity and inhibition of cholinephosphotransferase activity, both of which could participate in a concomitant increase in cholinephosphate pool size in rat liver.  相似文献   

7.
We have studied the roles of 5,10-methylenetetrahydrofolate (5,10-methylene-H4PteGlu) depletion and dihydrofolate (H2PteGlu) accumulation in the inhibition of de novo thymidylate synthesis by methotrexate (MTX) in human MCF-7 breast cancer cells. Using both a high pressure liquid chromatography system and a modification of the 5-fluoro-2'-deoxyuridine-5'-monophosphate radioenzymatic binding assay, we determined that the 5,10-methylene-H4PteGlu pool is 50-60% depleted in human MCF-7 breast cancer cells following exposure to 1 micron MTX for up to 21 h. Similar alterations in the 5,10-methylene-H4PteGlu pools were obtained when human promyelocytic HL-60 leukemia cells and normal human myeloid precursor cells were incubated with 1 micron MTX. The H2PteGlu pools within the MCF-7 cells increased significantly after 15 min of 1 micron MTX exposure, reaching maximal levels by 60 min. Thymidylate synthesis, as measured by labeled deoxyuridine incorporation into DNA, decreased to less than 20% of control activity within 30 min of 1 micron MTX exposure. The inhibition of thymidylate synthesis coincided temporally with the rapid intracellular accumulation of H2PteGlu, a known inhibitor of thymidylate synthase. Furthermore, inhibition of this pathway was associated in a log-linear fashion with the intracellular level of dihydrofolate. These studies provide further evidence that depletion of the thymidylate synthase substrate 5,10-methylene-H4PteGlu is inadequate to account completely for diminished thymidylate synthesis resulting from MTX treatment. Our findings suggest that acute inhibition of de novo thymidylate synthesis is a multifactorial process consisting of partial substrate depletion and direct enzymatic inhibition by H2PteGlu polyglutamates.  相似文献   

8.
To clarify the process of free and small peptide-bound hydroxyproline synthesis in hepatic fibrogenesis, we measured the in vitro synthesis of [14C]hydroxyproline in the 67% ethanol soluble fraction in rat liver slices, together with hepatic protein-bound [14C]hydroxyproline synthesis. In control rat liver, the amount of free and small peptide-bound [14C]hydroxyproline synthesized was 13.1 +/- 2.6 10(-4) x dpm/g liver/3 hr. In the CCl4-treated rat liver, where the hepatic hydroxyproline content was increased 4.6-fold, the protein-bound [14C]hydroxyproline synthesis was significantly increased 1.5-fold, but free and small peptide-bound [14C]hydroxyproline synthesis was decreased into 70%. There was a significant inverse correlation between free and small peptide-bound [14C]hydroxyproline synthesis, and hepatic hydroxyproline content. These results suggest that the combination of an increase in collagen synthesis and a decrease in free and small peptide-bound [14C]hydroxyproline synthesis contributes to rapid accumulation of collagen in hepatic fibrosis.  相似文献   

9.
We examined the effect of etomoxir treatment on de novo cardiolipin (CL) biosynthesis in H9c2 cardiac myoblast cells. Etomoxir treatment did not affect the activities of the CL biosynthetic and remodeling enzymes but caused a reduction in [1-14C]palmitic acid or [1-14C]oleic acid incorporation into CL. The mechanism was a decrease in fatty acid flux through the de novo pathway of CL biosynthesis via a redirection of lipid synthesis toward 1,2-diacyl-sn-glycerol utilizing reactions mediated by a 35% increase (P < 0.05) in membrane phosphatidate phosphohydrolase activity. In contrast, etomoxir treatment increased [1,3-3H]glycerol incorporation into CL. The mechanism was a 33% increase (P < 0.05) in glycerol kinase activity, which produced an increased glycerol flux through the de novo pathway of CL biosynthesis. Etomoxir treatment inhibited 1,2-diacyl-sn-glycerol acyltransferase activity by 81% (P < 0.05), thereby channeling both glycerol and fatty acid away from 1,2,3-triacyl-sn-glycerol utilization toward phosphatidylcholine and phosphatidylethanolamine biosynthesis. In contrast, etomoxir inhibited myo-[3H]inositol incorporation into phosphatidylinositol and the mechanism was an inhibition in inositol uptake. Etomoxir did not affect [3H]serine uptake but resulted in an increased formation of phosphatidylethanolamine derived from phosphatidylserine. The results indicate that etomoxir treatment has diverse effects on de novo glycerolipid biosynthesis from various metabolic precursors. In addition, etomoxir mediates a distinct and differential metabolic channeling of glycerol and fatty acid precursors into CL.  相似文献   

10.
The amino acid arginine is the sole precursor for nitric oxide (NO) synthesis. We recently demonstrated that an acute reduction of circulating arginine does not compromise basal or LPS-inducible NO production in mice. In the present study, we investigated the importance of citrulline availability in ornithine transcarbamoylase-deficient spf(ash) (OTCD) mice on NO production, using stable isotope techniques and C57BL6/J (wild-type) mice controls. Plasma amino acids and tracer-to-tracee ratios were measured by LC-MS. NO production was measured as the in vivo conversion of l-[guanidino-(15)N(2)]arginine to l-[guanidine-(15)N]citrulline; de novo arginine production was measured as conversion of l-[ureido-(13)C-5,5-(2)H(2)]citrulline to l-[guanidino-(13)C-5,5-(2)H(2)]arginine. Protein metabolism was measured using l-[ring-(2)H(5)]phenylalanine and l-[ring-(2)H(2)]tyrosine. OTC deficiency caused a reduction of systemic citrulline concentration and production to 30-50% (P < 0.001), reduced de novo arginine production (P < 0.05), reduced whole-body NO production to 50% (P < 0.005), and increased net protein breakdown by a factor of 2-4 (P < 0.001). NO production was twofold higher in female than in male OTCD mice in agreement with the X-linked location of the OTC gene. In response to LPS treatment (10 mg/kg ip), circulating arginine increased in all groups (P < 0.001), and NO production was no longer affected by the OTC deficiency due to increased net protein breakdown as a source for arginine. Our study shows that reduced citrulline availability is related to reduced basal NO production via reduced de novo arginine production. Under basal conditions this is probably cNOS-mediated NO production. When sufficient arginine is available after LPS stimulated net protein breakdown, NO production is unaffected by OTC deficiency.  相似文献   

11.
The capacity of lung explant cultures to synthesize collagen can be estimated by determining the content of [3H]hydroxyproline in protein following incubation with [3H]proline. The technique requires acid hydrolysis followed by quantitative separation of hydroxyproline from proline for scintillation counting and is often restricted to methods that can accommodate large samples because of relatively low specific radioactivity. A method which is useful for such samples, providing rapid separation of nonderivatized amino acids by ion-exchange HPLC, is described here. The HPLC system employs an HPX-87C cation-exchange column in 10 mm calcium acetate, pH 5.5, at 85°C. Under isocratic conditions hydroxyproline is completely resolved from proline with quantitative recovery of the 3H cpm applied to the column. Large amounts of material, equivalent to at least 150 mg wet wt of lung, can be applied without affecting resolution or recovery, and samples can be injected at intervals as short as 40 min. This method was used to study collagen biosynthesis in a model of pulmonary fibrosis induced in rabbits by the tumor-promoting agent, phorbol myristate acetate (PMA), and provides information concerning total protein synthesis as well as production of collagen. The data show a doubling in the rate of collagen production in lung explants prepared from animals treated with PMA compared with explants from control animals.  相似文献   

12.
N(G)-nitro-L-arginine methyl ester (L-NAME) is a non-specific nitric oxide (NO) synthase inhibitor, commonly used for the induction of NO-deficient hypertension. The aim of this study was to investigate the effect of chronic low-dose administration of L-NAME on NO production, vascular function and structure of the heart and selected arteries of rats. Adult male Wistar rats were treated with L-NAME in the dose of approximately 1.5 mg/kg/day in drinking water for 8 weeks. Basal blood pressure (BP) of rats (determined by tail-cuff) was 112+/-3 mm Hg. The low-dose administration of L-NAME significantly elevated BP measured on the third and sixth week of treatment vs. controls by approximately 9 % and 12 %, respectively. After this period, BP of L-NAME-treated rats returned to the control values. The relative left ventricular mass, heart fibrosis and collagen III/collagen I ratio were not affected by L-NAME. Similarly, there were no alterations in the cross-sectional area and wall thickness/diameter ratio of the aorta and the femoral artery of L-NAME-treated rats. NO synthase activity (determined by conversion of [(3)H]-L-arginine to [(3)H]-L-citrulline) was not altered in the hypothalamus of L-NAME-treated rats. Interestingly, chronic low-dose L-NAME treatment significantly elevated NO synthase activity in the left ventricle and aorta, increased endothelium-dependent acetylcholine-induced vasorelaxation and reduced serotonin-induced vasoconstriction of the femoral artery. The data suggest that chronic low-dose L-NAME treatment can increase NO production and vasorelaxation in normotensive rats without negative structural changes in the cardiovascular system.  相似文献   

13.
14.
It has been proposed that the clinical utility of methotrexate (MTX) in the treatment of rheumatoid arthritis may be due, in part, to inhibition of 5-amino imidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT) by polyglutamated forms of MTX. AICARFT is the second folate dependent enzyme in de novo purine biosynthesis. In this study, the effects of MTX on de novo purine biosynthesis as well as total nucleotide pools were evaluated in both the human T cell line, CEM, and phytohemagglutinin-activated normal human T lymphocytes. De novo synthesized purines were metabolically labeled with 14C-glycine after MTX treatment and analyzed by HPLC. In normal T cells, MTX produced a dose-dependent reduction in de novo adenosine and guanosine pools with maximal effects (>50%) at 1 microM MTX. In CEM cells, de novo purine synthesis was almost completely blocked by 1 microM MTX. Total purine pools were also reduced in both cell types after MTX treatment. Since 1 microM MTX caused almost complete growth inhibition in CEM cells, we evaluated whether growth could be reconstituted with exogenous purine bases and pyrimidine nucleosides which can be utilized via salvage pathways. The combination of hypoxanthine and thymidine substantially reversed growth inhibition with 1 microM MTX in CEM cells. Taken together, these results demonstrate that MTX inhibits de novo nucleotide synthesis in T cells and suggest that AICARFT inhibition may be one aspect of the multi-site mechanism of MTX action in the treatment of rheumatoid arthritis.  相似文献   

15.
Weight loss often results from various experimental conditions including scurvy in guinea pigs, where we showed that decreased collagen synthesis was directly related to weight loss, rather than to defective proline hydroxylation (Chojkier, M., Spanheimer, R., and Peterkofsky, B. (1983) J. Clin. Invest. 72, 826-835). In the study described here, this effect was reproduced by acutely fasting normal guinea pigs receiving vitamin C, as determined by measuring collagen and non-collagen protein production after labeling tissues in vitro with [3H]proline. Collagen production (dpm/microgram of DNA) decreased soon after initiating fasting and by 96 h it had reached levels 8-12% of control values. Effects on non-collagen protein were much less severe, so that the percentage of collagen synthesis relative to total protein synthesis was 20-25% of control values after a 96-h fast. These effects were not due to changes in the specific radioactivity of free proline. Refeeding reversed the effects on non-collagen protein production within 24 h, but collagen production did not return to normal until 96 h. The effect of fasting on collagen production was independent of age, sex, ascorbate status, species of animal, and type of connective tissue and also was seen with in vivo labeling. Pulse-chase experiments and analysis of labeled and pre-existing proteins by gel electrophoresis showed no evidence of increased collagen degradation as a result of fasting. Procollagen mRNA was decreased in tissues of fasted animals as determined by cell-free translation and dot-blot hybridization with cDNA probes. In contrast, there was no decrease in translatable mRNAs for non-collagen proteins. These results suggest that loss of nutritional factors other than vitamin C lead to a rapid, specific decrease in collagen synthesis mainly through modulation of mRNA levels.  相似文献   

16.
The mechanisms that regulate collagen gene expression in hepatic cells are poorly understood. Accelerated Ca2+ fluxes are associated with inhibiting collagen synthesis selectively in human fibroblasts (Flaherty, M., and Chojkier, M. (1986) J. Biol. Chem. 261, 12060-12065). In suspension cultures of isolated hepatocytes, the Ca2+ agonist vasopressin increases cytosolic levels of free Ca2+ (Thomas, A.P., Marks, J.S., Coll, K.E., and Williamson, J. R. (1983) J. Biol. Chem. 258, 5716-5725). However, whether vasopressin's interactions with plasma membrane V1 receptors attenuate hepatic collagen production is unknown. We investigated this problem by studying vasopressin's effects on collagen synthesis and Ca2+ efflux in long-term primary cultures of differentiated and proliferation-competent adult rat hepatocytes. Twelve-day-old quiescent cultures were exposed to test substances and labeled with [5-3H]proline. Determinations of radioactivity in collagenase-sensitive and collagenase-resistant proteins were used to calculate the relative levels of collagen production. Synthetic [8-arg]vasopressin stimulated 45Ca2+ efflux within 1 min and inhibited hepatocyte collagen production within 3 h by 50%; overall rates of protein synthesis were not affected significantly. In cultures labeled with [35S]methionine, vasopressin also decreased the levels of newly synthesized and secreted albumin, but not fibrinogen, detected in specific immunoprecipitates analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Northern blot analyses using specific [32P]cDNA probes revealed 70% decreases in hybridizable levels of collagen alpha 1(I) mRNA in hepatocyte cultures treated with either vasopressin or Ca2+ ionophore A23187; hybridizable levels of albumin mRNA also fell approximately 50% following vasopressin treatment. Vasopressin did not affect collagen production in quiescent cultures of mouse Swiss 3T3, human myofibroblast or rat smooth muscle cells; and hepatocyte collagen production was unaffected by treatment with glucagon or dibutyryl cAMP. Thus, accelerated Ca2+ fluxes induced by vasopressin are associated with decreased production of hepatocyte collagen and albumin in primary cultures that simulate quiescent adult rat liver.  相似文献   

17.
Perfusions of isolated livers from genetically hyperlipoproteinemic Zucker fa/fa and normolipemic Zucker Fa/- rats are performed with loads of ]9,10-3H2] oleic acid and [1-14C] glycerol. The hepatic acylglycerols anabolism from these precursors is higher in the fa/fa rat than in the control Fa/- rats. Synthesis by esterification (of oleic acid) is more increased than de novo synthesis (from glycerol). The increase in lipid anabolism is due to an augmentation of the hepatic cellular mass, but this anabolism is not regulated in the same way than in the normal rat.  相似文献   

18.
Lung surfactant disaturated phosphatidylcholine (PC) is highly dependent on the supply of palmitate as a source of fatty acid. The purpose of this study was to investigate the importance of de novo fatty acid synthesis in the regulation of disaturated PC production during late prenatal lung development. Choline incorporation into disaturated PC and the rate of de novo fatty acid synthesis was determined by the relative incorporation of [14C]choline and 3H2O, respectively, in 20-day-old fetal rat lung explants and in 18-day-old explants which were cultured 2 days. Addition of exogenous palmitate (0.15 mM) increased (26%) choline incorporation into disaturated PC but did not inhibit de novo fatty acid synthesis, as classically seen in other lipogenic tissue. Even in the presence of exogenous palmitate, de novo synthesis accounted for 87% of the acyl groups for disaturated PC. Inhibition of fatty acid synthesis by agaric acid or levo-hydroxycitrate decreased the rate of choline incorporation into disaturated PC. When explants were subjected to both exogenous palmitate and 60% inhibition of de novo synthesis, disaturated PC synthesis was below control values and 75% of disaturated PC acyl moieties were still provided by de novo synthesis. These data show that surfactant disaturated PC synthesis is highly dependent on the supply of palmitate from de novo fatty acid synthesis.  相似文献   

19.
Treatment of mice with the interferon inducer polyriboinosinic acid X polyribocytidylic acid [poly(IC)] results in the depression of several hepatic proteins. In this study we examined synthesis and degradation of the proteins of liver cell organelles in mice treated with poly(IC). Effects on synthesis were determined by using [14C]- and L-[3H]leucine incorporation into control and poly(IC)-treated mice, respectively. At selected times after poly(IC) treatment the 3H/14C ratio was established for preparations of nuclei, mitochondria, lysosomes, smooth endoplasmic reticulum, rough endoplasmic reticulum, and 105,000g supernatant (cytosol). Time-dependent alterations in de novo protein synthesis were greatest in lysosomal and rough endoplasmic reticular fractions; both were depressed 9 h after treatment. The effects of poly(IC) on protein degradation were determined with [14C]bicarbonate. Poly(IC) treatment decreased the time required for disappearance of 50% of 14C-labeled protein (t1/2) of smooth and rough endoplasmic reticula. Examination of endoplasmic reticulum marker enzymes showed depression of cytochromes P-450 and b5 from 9 h onward after poly(IC) administration. Tyrosine aminotransferase activity was elevated 6 h after treatment with poly(IC), and then depressed after 9 h. The other organelle marker enzymes were not affected significantly. We conclude that poly(IC) decreases the content of proteins of the hepatic endoplasmic reticulum, including certain cytochrome P-450 isozymes, by decreasing rates of protein synthesis and increasing rates of protein degradation.  相似文献   

20.
The high-affinity uptake of [3H]serotonin, [3H]glutamate, and [3H]gamma-aminobutyric acid [( 3H]GABA) and the Na+-independent binding of [3H]glutamate and [3H]GABA were studied using spinal cord preparations obtained from normal mongrel dogs and from dogs made paraplegic by midthoracic spinal cord crush. Lumbosacral regions of the spinal cord were removed either before (1 week) or after (3 to 8 weeks) onset of spasticity. A myelin-free synaptosomal fraction was obtained by centrifugation and used for studying high-affinity uptake and for preparing synaptic plasma membranes for Na+-independent binding experiments. For the paraplegic groups, the uptake of 30 nM [3H]serotonin was 66 and 18% of control values after 1 and 3 weeks, respectively. Eadie-Hofstee analysis of [3H]serotonin uptake showed a 90% reduction in Vmax for the paraplegic group relative to control values, thereby indicating the expected loss of descending serotonergic pathways. The high-affinity uptakes of 1 microM [3H]glutamate and [3H]GABA were the same in both the control and nonspastic paraplegic groups after 1 week. However, after 3 weeks, the uptakes of [3H]glutamate and [3H]GABA were 60-70% higher for the spastic group than for the control animals. For both amino acids, Eadie-Hofstee plots revealed no difference in Km and higher Vmax for the spastic group relative to control values. After 1 and 3 weeks, the Na+-independent binding of 5 nM [3H]glutamate was 40-85% higher and the binding of 10 nM [3H]GABA was 40-60% lower for the paraplegic groups relative to the values for the control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号