首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urinary excretion of total carnitine in 48-h fasted rats dropped to 0.30 +/- 0.01 mumol/day from 2.23 +/- 0.4 mumol/day found in fed, control animals (mean +/- SEM). Despite this marked retention, the total carnitine content of the whole body remained constant, about 83 mumol, predicting a slow-down in biosynthesis. The conversion of butyrobetaine into carnitine takes place only in the liver in rats. 48 h of starvation caused a decrease in the liver butyrobetaine level from 11.6 +/- 1.19 nmol/g to 9.30 +/- 1.19 nmol/g, which in whole livers corresponds to a decrease from 138 nmol to 61.3 nmol. The conversion rate of butyrobetaine into carnitine was studied with radiolabelled butyrobetaine. 30 min after injection of [3H]butyrobetaine the carnitine pool in the liver of fasted rats was labelled to about the same extent as that in fed rats, but from a butyrobetaine pool with higher specific radioactivity. Therefore, the conversion rate of butyrobetaine into carnitine was reduced. The newly formed carnitine found in the whole body of fasted rats was estimated to be 59% of controls. We conclude that the biosynthesis of carnitine in fasted rats slows down, for which a decreased availability of butyrobetaine in the liver is responsible. Urinary excretion of butyrobetaine in the fasted group decreased to 74.1 nmol/day from the 222-nmol/day control value while the butyrobetaine content of whole body did not significantly decrease (2.85 mumol vs. 3.04 mumol). Urinary excretion of trimethyllysine was also depressed.  相似文献   

2.
In unstressed, normoglycaemic fetal lambs, the liver produces little glucose, and gluconeogenesis is insignificant. Indirect measurements have suggested that the fetus may produce glucose endogenously during hypoglycaemia induced by prolonged maternal starvation. In eight fetal lambs we directly measured total and radiolabelled substrate concentration differences across the liver to determine whether the fetal liver produces glucose after four days of fasting-induced hypoglycaemia. Simultaneously we measured umbilical glucose uptake and fetal glucose utilization. Glucose concentrations in ewes (1.78 +/- 0.44 mmol.-1) and fetuses (0.61 +/- 0.17 mmol.l-1) were decreased. Fetal glucose utilization rate (21.7 +/- 8.9 mumol.min-1.kg-1) was not significantly different from umbilical glucose uptake (17.2 +/- 8.9 mumol.min-1.kg-1). Hepatic glucose production (8.9 +/- 17.2 mumol.min-1.100 g-1) and gluconeogenesis (6.1 +/- 4.4 mumol.min-1.100 g-1) were present, but could account for only 13% and 8% of fetal glucose requirements, respectively. To determine whether glucose output by the fetal liver was limited by substrate availability, we infused lactate, acetate, and acetone into the umbilical veins of four fasted animals, increasing hepatic substrate delivery. Hepatic glucose output did not increase during infusion of gluconeogenic substrates, indicating that substrate availability did not limit gluconeogenesis. We conclude that the gluconeogenic pathway is intact in late-gestation fetal lambs and that the fetal liver is capable of gluconeogenesis. However, the primary change in fetal metabolism during maternal starvation is the reduction in fetal glucose utilization, obviating the need for substantial hepatic glucose production. The factors stimulating this modest increase in fetal hepatic glucose production remain to be elucidated.  相似文献   

3.
We examined 1) the effect of L-carnitine supplementation on free fatty acid (FFA) utilization during exercise and 2) exercise-induced alterations in plasma levels and skeletal muscle exchange of carnitine. Seven moderately trained human male subjects serving as their own controls participated in two bicycle exercise sessions (120 min, 50% of VO2max). The second exercise was preceded by 5 days of oral carnitine supplementation (CS; 5 g daily). Despite a doubling of plasma carnitine levels, with CS, there were no effects on exercise-induced changes in arterial levels and turnover of FFA, the relation between leg FFA inflow and FFA uptake, or the leg exchange of other substrates. Heart rate during exercise after CS decreased 7-8%, but O2 uptake was unchanged. Exercise before CS induced a fall from 33.4 +/- 1.6 to 30.8 +/- 1.0 (SE) mumol/l in free plasma carnitine despite a release (2.5 +/- 0.9 mumol/min) from the leg. Simultaneously, acylated plasma carnitine rose from 5.0 +/- 1.0 to 14.2 +/- 1.4 mumol/l, with no evidence of leg release. Consequently, total plasma carnitine increased. We concluded that in healthy subjects CS does not influence muscle substrate utilization either at rest or during prolonged exercise and that free carnitine released from muscle during exercise is presumably acylated in the liver and released to plasma.  相似文献   

4.
The dose-dependent effect of ethanol on the hepatic metabolism of the perfused rat liver has been investigated by (a) 31P-NMR spectroscopy for the follow-up of intracellular phosphorylated metabolites and (b) HPLC for compounds released in the effluents. Perfusion of livers from fed rats with ethanol induced an increase in the level of sn-glycerol 3-phosphate and net accumulations of 3.30 +/- 0.33 and 0.69 +/- 0.15 mumol x g-1 wet liver were reached after 20 min, for 70 mM and 0.5 mM ethanol, respectively. sn-Glycerol-3-phosphate accumulation was fully detected by 31P NMR as indicated by comparing quantitations based on NMR and biochemical assays. Ethanol administration up to a concentration of 10 mM induced a dose-dependent decrease in the release of lactate + pyruvate by the liver. Lactate release decreased from 1129 +/- 39 to 674 +/- 84 nmol x min-1 x g-1, while pyruvate decreased from 230 +/- 9 to 6.2 +/- 0.4 nmol x min-1 x g-1, after 20 min of perfusion with 10 mM ethanol. Nevertheless, the flux through 6-phosphofructo-1-kinase, as measured by both the accumulation of sn-glycerol 3-phosphate and release of lactate + pyruvate, was not affected in the early phase of ethanol oxidation. Finally, data obtained from oxygen consumption, the release of acetate and the accumulation of sn-glycerol 3-phosphate do not support the involvement of the microsomal ethanol-oxidizing system in the catalysis of ethanol oxidation, even at high doses of alcohol.  相似文献   

5.
The release of carnitine is an important metabolic function of the liver. In the present study, we have investigated the effect of increased carnitine concentration on the hepatic release of carnitine. Hepatic carnitine concentration was increased in rats by clofibrate treatment. Release of carnitine was investigated as its efflux from perfused liver and its secretion into bile. A significantly smaller proportion of the hepatic pool of carnitine was released into the perfusion medium when carnitine concentration was increased by clofibrate treatment. However, the amount of carnitine released (nmol/g liver) was comparable to that of control rats. Increased carnitine concentration by clofibrate treatment also did not affect the rate of biliary secretion of carnitine. In control rats, nearly 50% of the released carnitine, in both the perfusion medium and bile, was acylcarnitine whereas in clofibrate-treated rats 35% of the released carnitine was acylcarnitine. Release into the perfusion medium was the major route for the hepatic export of carnitine. We conclude that when hepatic carnitine concentration is increased by clofibrate treatment, a smaller proportion of the hepatic carnitine pool is released, but the amount of carnitine released (nmol/g liver) is not greatly different than that from control animals.  相似文献   

6.
The carnitine carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite and celite and reconstituted in egg yolk phospholipid vesicles by adsorbing the detergent on polystyrene beads. In the reconstituted system, in addition to the carnitine/carnitine exchange, the purified protein catalyzed a uni-directional transport (uniport) of carnitine measured as uptake into unloaded proteoliposomes as well as efflux from prelabelled proteoliposomes. In both cases the reaction followed a first-order kinetics with a rate constant of 0.023-0.026 min-1. Besides carnitine, also acylcarnitines were transported in the uniport mode. N-Ethylmaleimide inhibited the uni-directional transport of carnitine completely. The uniport of carnitine is not influenced by the delta pH and the electric gradient across the membrane. The activation energy for uniport was 115 kJ/mol and the half-saturation constant on the external side of the proteoliposomes was 0.53 mM. The maximal rate of the uniport at 25 degrees C was 0.2 mumol/min per mg protein, i.e. about 10 times lower than that of the reconstituted carnitine transport in exchange mode.  相似文献   

7.
1. Starvation of rats for 40 hr decreased the body weight, liver weight and blood glucose concentration. The hepatic and skeletal muscle glycogen concentrations were decreased by 95% (from 410 mumol/g tissue to 16 mumol/g tissue) and 55% (from 40 mumol/g tissue to 18.5 mumol/g tissue), respectively. 2. Fine structural analysis of glycogen purified from the liver and skeletal muscle of starved rats suggested that the glycogenolysis included a lysosomal component, in addition to the conventional phosphorolytic pathway. In support of this the hepatic acid alpha-glucosidase activity increased 1.8-fold following starvation. 3. Refeeding resulted in liver glycogen synthesis at a linear rate of 40 mumol/g tissue per hr over the first 13 hr of refeeding. The hepatic glycogen store were replenished by 8 hr of refeeding, but synthesis continued and the hepatic glycogen content peaked at 24 hr (approximately 670 mumol/g tissue). 4. Refeeding resulted in skeletal muscle glycogen synthesis at an initial rate of 40 mumol/g tissue per hr. The muscle glycogen store was replenished by 30 min of refeeding, but synthesis continued and the glycogen content peaked at 13 hr (approximately 50 mumol/g tissue). 5. Both liver and skeletal muscle glycogen synthesis were inhomogeneous with respect to molecular size; high molecular weight glycogen was initially synthesised at a faster rate than low molecular weight glycogen. These observations support suggestions that there is more than a single site of glycogen synthesis.  相似文献   

8.
Ornithine transcarbamylase (OTCase) was purified from the small intestine of rat and the properties of the gut enzyme were compared with those of the enzyme from liver. The enzymes from both sources bound to the transition-state analog inhibitor, delta-N-(phosphonoacetyl)-L-ornithine, immobilized on Sepharose and eluted with carbamyl phosphate as a homogeneous preparation. The specific activities of the pure enzymes were 966 mumol min-1 mg-1 and 928 mumol min-1 mg-1 from liver and gut respectively, and the molecular mass, based on electrophoretic mobility, was 38 000 Da. The isoelectric point of the enzymes from both sources was 7.3. The enzymes from both sources cross-react to the same extent with antibodies against the liver enzyme on Western transfers and the size of the mRNA was identical on Northern transfers probed with a cDNA for the liver enzyme. Although OTCase is apparently the same gene product in both liver and gut, the enzyme levels respond differently to alterations in the protein content of the diet. OTCase in liver increased from 0.76 mumol min-1 microgram-1 DNA on 15% casein to 1.3 mumol min-1 microgram-1 DNA on 60% casein (P less than 0.01) whereas in small intestine the level decreased from 8.8 nmol min-1 microgram DNA on 15% casein to 5.7 nmol min-1 microgram-1 DNA on 60% casein (P less than 0.05). When expressed on a fresh-weight basis, the enzyme activity in liver shows the characteristic increase with increasing protein, whereas the activity in gut does not. The connection between these differences in gene expression and the different physiological roles of OTCase in liver and gut is discussed.  相似文献   

9.
The possible direct effects of insulin and glucagon on carnitine uptake by perfused rat liver were studied with L-[3H]carnitine of an initial concentration of 50 microM in the perfusate. Insulin (10 nM) did not significantly affect the uptake by livers from fed animals. However, insulin could reverse the stimulated transport by livers from 24-h fasted animals, reducing the uptake rate from 852 +/- 54.1 to 480 +/- 39.9 (mean +/- S.E.), P less than 0.01 (rates are expressed as nmol per h per 100 g body wt). Glucagon (50 nM) stimulated the uptake rate when livers were either from fed (551 +/- 40.1 vs. 915 +/- 55.3, P less than 0.01) or from fasted animals (852 +/- 54.1 vs. 1142 +/- 88.1, P less than 0.02). Based on these and earlier observations, we propose that the carnitine concentration in rat liver is controlled by insulin and glucagon via cellular transport processes.  相似文献   

10.
Aspects of carnitine ester metabolism in sheep liver   总被引:6,自引:6,他引:0       下载免费PDF全文
1. Carnitine acetyltransferase (EC 2.3.1.7) activity in sheep liver mitochondria was 76nmol/min per mg of protein, in contrast with 1.7 for rat liver mitochondria. The activity in bovine liver mitochondria was comparable with that of sheep liver mitochondria. Carnitine palmitoyltransferase activity was the same in both sheep and rat liver mitochondria. 2. The [free carnitine]/[acetylcarnitine] ratio in sheep liver ranged from 6:1 for animals fed ad libitum on lucerne to approx. 1:1 for animals grazed on open pastures. This change in ratio appeared to reflect the ratio of propionic acid to acetic acid produced in the rumen of the sheep under the two dietary conditions. 3. In sheep starved for 7 days the [free carnitine]/[acetylcarnitine] ratio in the liver was 0.46:1. The increase in acetylcarnitine on starvation was not at the expense of free carnitine, as the amounts of free carnitine and total acid-soluble carnitine rose approximately fivefold on starvation. An even more dramatic increase in total acid-soluble carnitine of the liver was seen in an alloxan-diabetic sheep. 4. The [free CoA]/[acetyl-CoA] ratio in the liver ranged from 1:1 in the sheep fed on lucerne to 0.34:1 for animals starved for 7 days. 5. The importance of carnitine acetyltransferase in sheep liver and its role in relieving ;acetyl pressure' on the CoA system is discussed.  相似文献   

11.
1. In isolated perfused rat liver maximal rates of 2-[1-14C]oxoglutarate uptake were about 0.4 mumol.g-1 .min-1; half-maximal rates of 2-[14C]oxoglutarate uptake were observed with influent concentrations of about 100 microM. 2-[14C]Oxoglutarate uptake by the liver was not affected by the direction of perfusion, but was decreased by about 80-90% when Na+ in the perfusion fluid was substituted by choline+, suggesting a Na+-dependence of hepatic 2-oxoglutarate uptake. In the absence of added ammonia, [14C]oxoglutarate uptake by the liver was about twice the net oxoglutarate uptake, indicating a simultaneous release of unlabeled oxoglutarate from perfused rat liver. 2. 14C-Labeled metabolites derived from [1-14C]oxoglutarate and recovered in the effluent perfusate were 14CO2 and 14C-labeled glutamate and glutamine; they accounted for 85-100% of the radiolabel taken up by the liver. 14CO2 was the major product (more than 70%) from [1-14C]oxoglutarate taken up the liver, provided glutamine synthesis was either inhibited by methionine sulfoximine or the endogenous rate of glutamine production was below 40 nmol.g-1.min-1. 3. Stimulation of glutamine synthesis by ammonia did not affect [14C]oxoglutarate uptake by the liver, but considerably increased net hepatic oxoglutarate uptake, indicating a decreased release of unlabeled oxoglutarate from the liver. Stepwise stimulation of hepatic glutamine synthesis led to a gradual decrease of 14CO2 production and radiolabel was recovered increasingly as [14C]glutamine in the effluent. At high rates of glutamine formation (i.e. about 0.6 mumol.g-1.min-1), about 60% of the [1-14C]oxoglutarate taken up by the liver was recovered in the effluent as [14C]glutamine. 14CO2 and [14C]glutamine production from added [1-14C]oxoglutarate were dependent on the rate of hepatic glutamine synthesis but not on the direction of perfusion. Extrapolation of 14C incorporation into glutamine to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of the [14C]oxoglutarate taken up by the liver for glutamine synthesis. This was again true for both the antegrade and the retrograde perfusion directions. On the other hand, addition of ammonia did not affect 14CO2 production from labeled oxoglutarate, when glutamine synthetase was inhibited by methionine sulfoximine. 4. The data suggest that vascular oxoglutarate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase, i.e. a cell population comprising only 6-7% of all hepatocytes. Thus, the findings demonstrate the existence of a, to date, uniquely zonally distributed oxoglutarate transport system which is probably Na+-dependent in the plasma membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
1. Urea synthesis was studied in isolated perfused rat liver during cell volume regulatory ion fluxes following exposure of the liver to anisotonic perfusion media. Lowering of the osmolarity in influent perfusate from 305 mOsm/l to 225 mOsm/l (by decreasing influent [NaCl] by 40 mmol/l) led to an inhibition of urea synthesis from NH4Cl (0.5 mmol/l) by about 60% and a decrease of hepatic oxygen uptake by 0.43 +/- 0.03 mumol g-1 min-1 [from 3.09 +/- 0.13 mumol g-1 min-1 to 2.66 +/- 0.12 mumol g-1 min-1 (n = 9)]. The effects on urea synthesis and oxygen uptake were observed throughout hypotonic exposure (225 mOsm/l). They persisted although volume regulatory K+ efflux from the liver was complete within 8 min and were fully reversible upon reexposure to normotonic perfusion media (305 mOsm/l). A 42% inhibition of urea synthesis from NH4Cl (0.5 mmol/l) during hypotonicity was also observed when the perfusion medium was supplemented with glucose (5 mmol/l). Urea synthesis was inhibited by only 10-20% in livers from fed rats, and was even stimulated in those from starved rats when an amino acid mixture (twice the physiological concentration) plus NH4Cl (0.2 mmol/l) was infused. 2. The inhibition of urea synthesis from NH4Cl (0.5 mmol/l) during hypotonicity was accompanied by a threefold increase of citrulline tissue levels, a 50-70% decrease of the tissue contents of glutamate, aspartate, citrate and malate, whereas 2-oxoglutarate, ATP and ornithine tissue levels, and the [3H]inulin extracellular space remained almost unaltered. Further, hypotonic exposure stimulated hepatic glutathione (GSH) release with a time course roughly paralleling volume regulatory K+ efflux. NH4Cl stimulated lactate release from the liver during hypotonic but not during normotonic perfusion. In the absence of NH4Cl, hypotonicity did not significantly affect the lactate/pyruvate ratio in effluent perfusate. With NH4Cl (0.5 mmol/l) present, the lactate/pyruvate ratio increased from 4.3 to 8.2 in hypotonicity, whereas simultaneously the 3-hydroxybutyrate/acetoacetate ratio slightly, but significantly decreased. 3. Addition of lactate (2.1 mmol/l) and pyruvate (0.3 mmol/l) to influent perfusate did not affect urea synthesis in normotonic perfusions, but completely prevented the inhibition of urea synthesis from NH4Cl (0.5 mmol/l) induced by hypotonicity. Restoration of urea production in hypotonic perfusions by addition of lactate and pyruvate was largely abolished in the presence of 2-cyanocinnamate (0.5 mmol/l). Addition of 3-hydroxybutyrate (0.5 mmol/l), but not of acetoacetate (0.5 mmol/l) largely reversed the hypotonicity-induced inhibition of urea synthesis from NH4Cl.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Concentrations of carnitine, acetyl carnitine, propionyl carnitine, and long chain acyl carnitines have been measured in hepatic tissue of normal and vitamin B-12 deficient rats using radiolabelled butyrobetaine to label carnitine pools. Increased levels of propionyl carnitine were seen in the livers of vitamin B-12 deprived animals when compared to those from normal animals. Methylmalonyl carnitine was not detected in the B-12 deprived animals. Free carnitine levels were no different in the livers from the B-12 deprived animals than from the normal control animals.  相似文献   

14.
Hepatic glutathione (GSH) plays an important role in the detoxification of reactive molecular intermediates. Because of evidence that the intrahepatic turnover of glutathione in the rat may be largely accounted for by efflux from hepatocytes into the general circulation, the quantitation of plasma GSH turnover in vivo could provide a noninvasive index of hepatic glutathione metabolism. We developed a method to estimate plasma glutathione turnover and clearance in the intact, anesthetized rat using a 30-min unprimed, continuous infusion of 35S-labelled GSH. A steady state of free plasma glutathione specific radioactivity was achieved within 10 min, as determined by high-pressure liquid chromatography with fluorometric detection after precolumn derivatization of the plasma samples with monobromobimane. The method was tested after two treatments known to alter hepatic GSH metabolism: 90 min after intraperitoneal injection of 4 mmol/kg buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, and after a 48-h fast. Liver glutathione concentration (mean +/- SEM) was 5.00 +/- 0.53 mumol/g wet weight in control rats. It decreased to 3.10 +/- 0.35 mumol/g wet weight after BSO injection and to 3.36 +/- 0.14 mumol/g wet weight after fasting (both p less than 0.05). Plasma glutathione turnover was 63.0 +/- 7.46 nmol.min-1.100 g-1 body weight in control rats, 35.0 +/- 2.92 nmol.min-1.g-1 body weight in BSO-treated rats, and 41.7 +/- 2.28 nmol.min-1.g-1 body weight after fasting (both p less than 0.05), thus reflecting the hepatic alterations. This approach might prove useful in the noninvasive assessment of liver glutathione status.  相似文献   

15.
The kinetics of acetoacetate (A) and beta-hydroxybutyrate (B) have been studied following the injection as a pulse or continued infusion of [3-14C]acetoacetate (A*) or [14C]beta-hydroxybutyrate (B*) into six newly diagnosed, untreated, ketotic diabetic patients, ten obese subjects in the postabsorptive state, and the ten obese subjects after 1-2 weeks starvation (50 cal per day). Employing a compartmental model of acetoacetate and beta-hydroxybutyrate kinetics developed using CONSAM for normal subjects, the rate coefficients (Lij), rates of release of newly synthesized acetoacetate and beta-hydroxybutyrate into the blood (UA, UB), and fractional removal of each compound (FCRA and FCRB) were calculated. Ketone body release into blood (UA + UB) in diabetic subjects was threefold higher than normal (mean +/- SD, 208 +/- 118 versus 81 +/- 66 mumol min-1 m-2) and in obese subjects the rate increased on starvation from 171 +/- 70 to 569 +/- 286 mumol min-1 m-2. In each case most of the increase was in beta-hydroxybutyrate. The major change in diabetes and on starvation of the obese subjects was in the rate coefficient for removal of ketone bodies. Normally 0.168 +/- 0.109 min-1, it was 0.055 +/- 0.040 min-1 in the diabetic patients and fell from 0.066 +/- 0.040 to 0.027 +/- 0.019 min-1 in the obese subjects on starvation. In normal subjects, FCRA was similar to FCRB (0.226 +/- 0.142 versus 0.188 +/- 0.124 min-1). However, in diabetics, FCRA was 0.074 +/- 0.044 and FCRB was 0.050 +/- 0.034 min-1 and both were lower than normal. On starvation of obese subjects, FCRA fell from 0.199 +/- 0.047 to 0.089 +/- 0.035 min-1, whereas FCRB fell from 0.141 +/- 0.040 to 0.033 +/- 0.012 min-1. Therefore, the removal of beta-hydroxybutyrate was impaired more than that of acetoacetate in all patients. Our results confirm previous observations that ketosis is associated with high rates of ketogenesis and a decrease in fractional clearance. In addition, we found that in diabetes, obesity, and in obese subjects following starvation, most of the increased synthesis was in beta-hydroxybutyrate and that the clearance of beta-hydroxybutyrate decreased more than that of acetoacetate.  相似文献   

16.
Perfusion of livers from fed and fasted rats with 0.07--0.1 mM t-butyl hydroperoxide for 15 min decreased the levels of reduced glutathione (GSH) by 1.5 mumol/g liver in both nutritional states. Glutathione disulfide (GSSG) was increased by 70 and 140 nmol/g liver and glutathione mixed disulfides enhanced by 45 and 150 nmol/g liver in livers from fed and fasted animals, respectively. The ratio of GSH/GSSG was decreased from 243 to 58 in fed animals, and from 122 to 8 in fasted animals. The increase of GSSG and the mixed disulfides was nearly parallel until an apparently critical low GSH content of 1.5 mumol/g was reached. Only in livers from fasted rats 14CO2-production from [1-14C]glucose was stimulated upon t-butyl hydroperoxide infusion at the employed rates. Flux of glucose through pentose phosphate cycle rose from 8 to 12% of glucose utilization via glycolysis, whereas in livers from fed animals this portion remained unchanged at 8% Dithio-erythritol reversed pentose phosphate cycle activity as well as GSSG and protein-bound glutathione contents to the original levels. In livers from fasted rats the activity of glucose-6-phosphate dehydrogenase was increased by 34% by t-butyl hydroperoxide infusion.  相似文献   

17.
The concentrations of free and total (free plus albumin bound) tryptophan were measured in plasma of blood taken from the portal vein, hepatic vein and abdominal aorta of male rats, fed, and starved for one and three days. Liver and brain tryptophan concentrations were measured in similar groups of rats.On starvation, there was an increase in arterial plasma free tryptophan concentration which took place peripherally and was paralleled by an increase in brain tryptophan. In both the fed and starved rats, the portal vein concentrations of free tryptophan were high and as the blood flowed through the liver they were reduced to relatively low levels not directly related to the arterial values. All these changes were due to alterations in degree of binding of tryptophan to plasma albumin.The measurements of plasma total tryptophan concentrations showed that postabsorptively and during starvation there was a net uptake of tryptophan by the peripheral tissues (which included brain), but no overall fall in plasma concentration. At the same time, there was a net release from the liver, and to a lesser extent from the portal-drained tissues. The released tryptophan largely entered the albumin bound plasma pool. Accompanying the hepatic output was a fall in tryptophan concentration in the liver which was apparently caused by altered cell membrane transport.The results suggest (1) that the liver protects the brain from the high free tryptophan level in portal blood, (2) that the availability of tryptophan to the brain is maintained postabsorptively and during starvation by hepatic output into the albumin bound pool and (3) that this release of tryptophan from the liver and the fall in intracellular tryptophan concentration are initiated by altered membrane transport. The pattern of changes is consistent with a role for tryptophan in the mediation of changes in liver protein synthesis and gluconeogenesis and cerebral serotonin turnover on starvation.  相似文献   

18.
In isolated perfused rat liver, addition of the oxoanalogues of leucine, isoleucine, methionine and phenylalanine is followed by a rapid and reversible stimulation of glutamate release. This is not observed with the corresponding amino acids or 2-oxoisovalerate, 2-oxoglutarate or oxaloacetate. The increased glutamate release by the liver is accompanied by a decrease in the tissue contents of 2-oxoglutarate and glutamate by about 25% and 50%, respectively. During the metabolism of glutamine, i.e. conditions with elevated tissue glutamate concentrations, 2-oxoacid-induced glutamate release is stimulated. In the presence of glutamine (5 mM), 2-oxoisocaproate, 2-oxo-4-methylvalerate and 2-oxo-4-methylthiobutyrate were found to be most effective and glutamate release by the liver increased linearly from about 80 nmol g-1 min-1 to 600 nmol g-1 min-1 at increasing 2-oxoacid concentrations up to 1 mM. When glutamate tissue levels were decreased by phenylephrine, stimulation of glutamate release by 2-oxoisocaproate was markedly diminished. 2-Oxoacid-stimulated glutamate release is independent of oxoacid metabolism, indicating that the effect is probably not explained by a 2-oxoacid/glutamate exchange across the liver plasma membrane. 2-Oxoacid-induced glutamate export predominantly occurs in a sodium-independent way. At low concentrations of 2-oxoisocaproate (below 0.2 mM), the increased glutamate release was accompanied by a slight inhibition of 14CO2 production from added [14C]glutamate, indicating a simultaneous glutamate uptake and release also under these conditions. Stimulation of glutamate release by 2-oxoisocaproate is followed by a decreased rate of urea and glutamine synthesis from portal ammonia, as a consequence of an increased glutamate release.  相似文献   

19.
1. Metabolism of added hydroperoxides was studied in hemoglobin-free perfused rat liver and in isolated rat hepatocytes as well as microsomal and mitochondrial fractions. 2. Perfused liver is capable of removing organic hydroperoxides [cumene and tert-butyl hydroperoxide] at rates up to 3--4 mumol X min-1 X gram liver-1. Concomitantly, there is a release of glutathione disulfide (GSSG) into the extracellular space in a relationship approx. linear with hydroperoxide infusion rates. About 30 nmol GSSG are released per mumol hydroperoxide added per min per gram liver. GSSG release is interpreted to indicate GSH peroxidase activity. 3. GSSG release is observed also with added H2O2. At rates of H2O2 infusion of about 1.5 mumol X min-1 X gram liver-1 a maximum of GSSG release is attained which, however, can be increased by inhibition of catalase with 3-amino-1,2,4-aminotriazole. 4. A contribution of the endoplasmic reticulum in addition to glutathione peroxidase in organic hydroperoxide removal is demonstrated (a) by comparison of perfused livers from untreated and phenobarbital-pretreated rats and (b) in isolated microsomal fractions, and a possible involvement of reactive iron species (e.g. cytochrome P-450-linked peroxidase activity) is discussed. 5. Hydroperoxide addition to microsomes leads to rapid and substantial lipid peroxidation as evidenced by formation of thiobarbituric-acid-reactive material (presumably malondialdehyde) and by O2 uptake. Like in other types of induction of lipid peroxidation, malondialdehyde/O2 ratios of 1/20 are observed. Cumene hydroperoxide (0.6 mM) gives rise to 4-fold higher rates of malondialdehyde formation than tert-butyl hydroperoxide (1 mM). Ethylenediamine tetraacetate does not inhibit this type of lipid peroxidation. 6. Lipid peroxidation in isolated hepatocytes upon hydroperoxide addition is much lower than in isolated microsomes or mitochondria, consistent with the presence of effective hydroperoxide-reducing systems. However, when NADPH is oxidized to the maximal extent as evidenced by dual-wavelength spectrophotometry, lipid peroxidation occurs at large amounts. 7. A dependence of hydroperoxide removal rates upon flux through the pentose phosphate pathway is suggested by a stimulatory effect of glucose in hepatocytes from fasted rats and by an increased rate of 14CO2 release from [1-14C]glucose during hydroperoxide metabolism in perfused liver.  相似文献   

20.
1. The metabolic fate of infused [1-14C]glutamate was studied in perfused rat liver. The 14C label taken up by the liver was recovered to 85 +/- 2% as 14CO2 and [14C]glutamine. Whereas 14CO2 production accounted for about 70% of the [1-14C]glutamate taken up under conditions of low endogenous rates of glutamine synthesis, stepwise stimulation of glutamine synthesis by NH4Cl increased 14C incorporation into glutamine at the expense of 14CO2 production. Extrapolation to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of vascular glutamate taken up by the liver for glutamine synthesis. This was observed in both, antegrade and retrograde perfusions and suggests an almost exclusive uptake of glutamate into perivenous glutamine-synthetase-containing hepatocytes. 2. Glutamate was simultaneously taken up and released from perfused rat liver. At a near-physiological influent glutamate concentration (0.1 mM), the rates of unidirectional glutamate influx and efflux were similar (about 100 and 120 nmol g-1 min-1, respectively). 3. During infusion of [1-14C]oxoglutarate (50 microM), addition of glutamate (2 mM) did not affect hepatic uptake of [1-14C]oxoglutarate. However, it increased labeled glutamate release from the liver about 10-fold (from 9 +/- 2 to 86 +/- 20 nmol g-1 min-1; n = 4), whereas 14CO2 production from labeled oxoglutarate decreased by about 40%. This suggests not only different mechanisms of oxoglutarate and glutamate transport across the plasma membrane, but also points to a glutamate/glutamate exchange. 4. Oxoglutarate was recently shown to be taken up almost exclusively by perivenous glutamine-synthetase-containing hepatocytes [Stoll, B & H?ussinger, D. (1989) Eur. J. Biochem. 181, 709-716] and [1-14C]oxoglutarate (9 microM) was used to label selectively the intracellular glutamate pool in this perivenous cell population. The specific radioactivity of this intracellular (perivenous) glutamate pool was assessed by measuring the specific radioactivity of newly synthesized glutamine which is continuously released from these cells into the perfusate. Comparison of the specific radioactivities of glutamine and glutamate released from perivenous cells indicates that about 60% of total glutamate release from the liver is derived from the perivenous glutamine-synthetase-containing cell population. Following addition of unlabeled glutamate (0.1 mM), unidirectional glutamate efflux from perivenous cells increased from about 30 to 80 nmol g-1 min-1, whereas glutamate efflux from non-perivenous (presumably periportal) hepatocytes remained largely unaltered (i.e. 20-30 nmol g-1 min-1). 5. It is concluded that, in the intact liver, vascular glutamate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号