首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turnover of cerebroside sulfate (sulfatide) was followed in both microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of Na(2)(35)SO(4). In the adult rats, the specific radioactivity of sulfatide of the microsomal fraction reached a maximum 12 hr after the injection, and after 3 days it was reduced to less than 30% of the maximum. In contrast, the specific radioactivity of the myelin sulfatide did not reach a peak until 3 days after the injection and remained essentially at the same level for as long as 6 months. In the case of 17-day-old rats, the specific radioactivity of myelin sulfatide reached a maximum level around 12 hr after the injection and then appeared to decline. The decline was most marked 2-6 days after the injection, suggesting an apparently rapid turnover of myelin sulfatide. When a correction was made for deposition of newly formed sulfatide, the results indicated that the turnover of myelin in the developing animals was also relatively slow. In vitro experiments with purified myelin and 3'-phosphoadenosine-5'-[(35)S]phosphosulfate showed that myelin does not catalyze the galactocerebroside sulfotransferase reaction. This enzyme was found mainly in the microsomal fraction. In vivo studies suggested that a transfer of sulfatide molecules from the endoplasmic reticulum to myelin might occur. In order to obtain direct evidence for such a transfer, rat brain slices after pulse labeling with Na(2)(35)SO(4) were washed free of the isotope and reincubated with nonlabeled Na(2)SO(4). The specific radioactivity of the microsomal sulfatide declined, with a concomitant rise in the specific radioactivity of the myelin sulfatide. These observations are therefore consistent with the postulate that myelin sulfatide is probably synthesized in the endoplasmic reticulum.  相似文献   

2.
1. Inorganic [(32)P]phosphate, [U-(14)C]glycerol and [2-(14)C]ethanolamine were injected into the lateral ventricles in the brains of adult rats, and the labelling of individual phospholipids was followed over 2-4 months in both a microsomal and a highly purified myelin fraction. 2. All the phospholipids in myelin became appreciably labelled, although initially the specific radioactivities of the microsomal phospholipids were somewhat higher. Eventually the specific radioactivities in microsomal and myelin phospholipids fell rapidly at a rate corresponding to the decline of radioactivity in the acid-soluble pools. 3. Equivalent experiments carried out in developing rats with [(32)P]phosphate administered at the start of myelination showed some persistence of phospholipid labelling in the myelin, but this could partly be attributed to the greater retention of (32)P in the acid-soluble phosphorus pool and recycling. 4. It is concluded that a substantial part of the phospholipid molecules in adult myelin membranes is readily exchangeable, although a small pool of slowly exchangeable material also exists. 5. A slow incorporation into or loss of labelled precursor from myelin phospholipids does not necessarily give a good indication of the rate of renewal of the molecules in the membrane. As presumably such labelled molecules originate by exchange with those in another membrane site (not necessarily where synthesis occurs) it is only possible to calculate the turnover rate in the myelin membrane if the behaviour of the specific radioactivity with time of the phospholipid molecules in the immediate precursor pool is known.  相似文献   

3.
Dysregulation of myelin sulfatides is a risk factor for cognitive decline with age. Vitamin K is present in high concentrations in the brain and has been implicated in the regulation of sulfatide metabolism. Our objective was to investigate the age-related interrelation between dietary vitamin K and sulfatides in myelin fractions isolated from the brain regions of Fischer 344 male rats fed one of two dietary forms of vitamin K: phylloquinone or its hydrogenated form, 2′,3′-dihydrophylloquinone (dK), for 28 days. Both dietary forms of vitamin K were converted to menaquinone-4 (MK-4) in the brain. The efficiency of dietary dK conversion to MK-4 compared to dietary phylloquinone was lower in the striatum and cortex, and was similar to that in the hippocampus. There were significant positive correlations between sulfatides and MK-4 in the hippocampus (phylloquinone-supplemented diet, 12 and 24 months; dK-supplemented diet, 12 months) and cortex (phylloquinone-supplemented diet, 12 and 24 months). No significant correlations were observed in the striatum. Furthermore, sulfatides in the hippocampus were significantly positively correlated with MK-4 in serum. This is the first attempt to establish and characterize a novel animal model that exploits the inability of dietary dK to convert to brain MK-4 to study the dietary effects of vitamin K on brain sulfatide in brain regions controlling motor and cognitive functions. Our findings suggest that this animal model may be useful for investigation of the effect of the dietary vitamin K on sulfatide metabolism, myelin structure and behavior functions.  相似文献   

4.
Severe essential fatty acid deficiency (EFAD) was induced by feeding weanling rats a diet free of essential fatty acids 8 months after weaning. The fatty acid compositions of phospholipids and glycosphingolipids in peripheral nerve myelin were compared in rats with and without EFAD. With the deficient diet, 20:3ω9 was found in the major myelin phospholipids. The level of 18:1 was increased and the levels of 18:2ω6, 20:4ω6, and 22:4ω6 were decreased. Both sphingomyelin and cerebroside showed higher proportion of 24:1 and lower proportions of 24:0 in EFA-deficient rats than in control rats. The fatty acid chain elongating system in myelin cerebroside was also depressed by EFAD. A two- to sevenfold increase of the ratio 20:4ω6 to 20:3ω6 was found in myelin phospholipids of regenerated nerve from rats fed control diet. However, this ratio was suppressed by EFAD diet. The biochemical index (20:3ω9/20:4ω6) for EFAD was not affected by crush injury. These results suggest that dietary EFAD in postweaning rats can induce fatty acid alterations in peripheral nerve myelin without resulting in detectable changes in function or structure and that myelin lipids may be sequestered and reused during nerve degeneration and regeneration.  相似文献   

5.
Abstract— The variation with age of the fatty acid composition of the major lipids in human brain myelin was compared with that of cerebral white matter from the same region. The myelin was isolated from the semiovale centre of the cerebrum of 27 subjects neonatal to old aged. The phospholipid, cholesterol and galactolipid concentrations were determined in all the samples, as were the proportions of the major phospholipid classes. The proportions of cholesterol and especially of the galactolipids increased in myelin during the first 6 months, and in cerebral white matter up to 2 years. During this period the individual phospholipids also varied substantially. Serine phosphoglycerides and especially sphingomyelins increased, and choline phosphoglycerides decreased. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) and sphingomyelins underwent the largest changes. The proportions of saturated fatty acids in EPG diminished rapidly, and there was an increase of monoenoic acids. Fatty acids of the linoleic acid series showed a peak between 4 and 12 months, after which time their proportion slowly diminished to old age. The major fatty acid of this series was docosatetraenoic acid, 22:4 (n-6), which constituted more than 25% of total fatty acids at the maximum level. The fatty acid changes were larger in cerebral white matter, but from 2 years of age the EPG fatty acid pattern in myelin was similar to that in white matter. The fatty acid changes in serine and choline phosphoglycerides of myelin with maturation were much less striking than in EPG but of a similar type. In myelin sphingomyelin the proportion of saturated long-chain fatty acids, C16-C22, diminished, while that of monoenoic acids increased and continued to do so up to old age. From 2 years of age the fatty acid patterns in myelin and cerebral white matter were quite similar. Also the fatty acid patterns of cerebrosides and sulphatides in cerebral white matter and myelin were the same except for the first 2 months of life. The same fatty acid changes occurred in cerebrosides and sulphatides as in the sphingomyelins, i.e. increased proportions of unsaturated (monoenoic) acids. The proportions of 24:1 and 24h:1 and of the odd-numbered fatty acids 25:1 and 23h:1 continued to increase to old age. The variations of the individual lipid fatty acid patterns were small except in the youngest age classes, in which the variations were presumably ascribable to the difficulty in determining the gestational age.  相似文献   

6.
Brain slices from 20 day old rats were incubated with radioactive aminoacids in the presence and absence of 500 M colchicine and the appearance of labeled proteins in myelin and in a myelin-like fraction (SN4 fraction) was measured. In the presence of the inhibitor, the entry of proteolipid proteins was decreased to 55% in myelin and to 45% in SN4 fraction with reference to control values while the entry of basic proteins and other minor protein components was unaffected in both fractions. The synthesis of proteolipid proteins was not affected by the presence of colchicine; moreover, a slight accumulation of these proteins was observed in microsomes. The results suggest that the microtubular system is involved in the transport of proteolipid proteins from their site of synthesis to their site of deposition and that the various types of myelin proteins follow different transport routes to enter into this special type of membrane.  相似文献   

7.
Formation and turnover of myelin ganglioside   总被引:7,自引:6,他引:1  
—In young adult rats, the formation and turnover of GM1-ganglioside in myelin were compared with the formation and turnover of GM1-ganglioside in whole brain and of total lipids in whole brain and myelin, after injection of d-[1-14C]glucosamine. During the first 24 hr after injection, the specific activity of GM1-ganglioside in myelin was less than 25 per cent of that of GM1-ganglioside in whole brain. The specific activity of ganglioside in whole brain was maximal at 24 hr and then declined steadily during the next 3 months, whereas the specific activity of GM1-ganglioside in myelin continued to increase and did not reach a peak until about one month after injection, by which time its specific activity had increased five-fold. Consequently, the specific activity of GM1-ganglioside in myelin was 50 per cent higher than ganglioside in whole brain after one month. These differences in the formation and turnover of GM1-ganglioside in myelin and of whole brain are similar to those of other lipids of myelin and of whole brain, indicating that the metabolic activity of myelin ganglioside is similar to myelin lipids, but differs from whole brain lipids or whole brain gangliosides. These data provide additional evidence that ganglioside in myelin is an intrinsic constituent of the myelin sheath. GT1 (G1), GD1b, (G2), GD1a (G3), GM1 (G4), GM2 (G5), GM3 (G6).  相似文献   

8.
A survey of differences in composition and metabolism of myelin from five areas of the central nervous system was made in brain and spinal cord slices of the rat from 20 days to 20 months postnatal age. Purified myelin from the forebrain areas showed a composition characteristic of immaturity longer than did myelin from the hindbrain and spinal cord. The trend of chemical maturity is in agreement with the anatomical observations that myelination begins in the hindbrain and proceeds rostrally. Myelin recovery per 100-mg slice increased continually from 20 days to 20 months of age, while the uptake of [1-(14)C]acetate into myelin lipid and of [1-(14)C]leucine into myelin protein decreased precipitously with age. Taking into account the continuous increase in myelin during maturation, a calculation was made of the total amount of incorporation of labeled material into lipids or proteins per 100-mg slice for each region at each age. The metabolic characteristics of myelin from the cerebral cortex (including the corpus callosum), the thalamic area, and the cerebellum were very similar, while myelin from brainstem and spinal cord was metabolically more active, especially at the early ages. Synthesis of lipid in the myelin sheath represents about 50% of the lipid synthesis of the whole brain and about 75% of that of the spinal cord. The proportion of myelin-related protein synthesis is much less, probably less than 10% of the protein synthesis occurring in whole brain and about 15% of that in the spinal cord except at early ages.  相似文献   

9.
Polyphosphoinositides in myelin   总被引:25,自引:14,他引:11       下载免费PDF全文
1. On fractionation of guinea-pig forebrain homogenates by differential and gradient-density centrifugation most of the polyphosphoinositides were recovered in the myelin-rich particles. 2. The phospholipids of pure preparations of myelin contained di- and tri-phosphoinositide in proportions 2-3 times greater than in the whole-brain phospholipids. 3. Di- and tri-phosphoinositide appeared in young rat brain during the period of myelination. 4. After the administration of [(32)P]phosphate to guinea pigs the labelling of the polyphosphoinositides in isolated pure myelin was as great as in the whole brain, whereas little synthesis of the other myelin phospholipids had occurred. 5. When brain subcellular fractions were incubated with [gamma-(32)P]ATP, some triphosphoinositide labelling occurred in the myelin-rich fraction whereas the active labelling of diphosphoinositide was localized mainly in the mitochondrial fraction. 6. The Na(+), K(+) and Mg(2+) plus Ca(2+) concentrations in purified myelin have been determined. The Mg(2+) plus Ca(2+) content present showed close acid-base equivalence to the polyphosphoinositides. 7. It is concluded that di- and tri-phosphoinositide are rapidly-metabolizing components of the myelin sheath or intimately associated structures.  相似文献   

10.
Surprising thermal transition in fish myelin   总被引:1,自引:0,他引:1  
A new structural transition in nerve myelin has been discovered by means of X-ray diffraction of excised teleost nerves in physiological saline. The reversible transition is between two structures, designated AS and AL, with repeating distances (d spacings) differing by 25-35 A. When the temperature of bream spinal cord is lowered from room temperature to 4 degrees C, much but not all of the AS (short spacing) myelin changes into AL (long spacing) myelin. The change is reversed when the temperature is raised back to 22 degrees C, and it occurs a second time when the temperature is lowered again to 4 degrees C. The myelin in bream optic nerve undergoes a similar thermal transition, but the myelin in brachial plexus does not. The thermal transition does not involve the liquid crystal-to-gel transition observed in lipids and natural membranes. When a specimen is kept at constant temperature, there is a gradual conversion from AS to AL myelin which is not thermally reversible, suggesting the existence of two distinct subclasses of AL. Similarly, two subclasses are indicated for AS myelin since part of it does not transform thermally. The observations reported here may have significance for the evolutionary development of myelin.  相似文献   

11.
Glycosphingolipids and cholesterol form lateral assemblies, or lipid 'rafts', within biological membranes. Lipid rafts are routinely studied biochemically as low-density, detergent-insoluble complexes (in non-ionic detergents at 4 degrees C; DIGs, detergent-insoluble glycosphingolipid/cholesterol microdomains). Recent discrepancies recommended a re-evaluation of the conditions used for the biochemical analysis of lipid rafts. We have investigated the detergent insolubility of several known proteins present in the glycosphingolipid/cholesterol-rich myelin membrane, using four detergents representing different chemical classes (TX-100, CHAPS, Brij 96 and TX-102), under four conditions: detergent extraction of myelin either at (i) 4 degrees C or (ii) 37 degrees C, or at 4 degrees C after pre-extraction with (iii) saponin or (iv) methyl-beta-cyclodextrin (MbetaCD). Each detergent was different in its ability to solubilize myelin proteins and in the density of the DIGs produced. Brij 96 DIGs floated to a lower density than other detergents tested, possibly representing a subpopulation of DIGs in myelin. DIGs pre-extracted with saponin were denser than DIGs pre-extracted with MbetaCD. Furthermore, pre-extraction with MbetaCD solubilized proteolipid protein (known to associate with cholesterol), whereas pre-extraction with saponin did not, suggesting that saponin is less effective as a cholesterol-perturbing agent than is MbetaCD. These results demonstrate that DIGs isolated by different detergents are not necessarily comparable, and that these detergent-specific DIGs may represent distinct biochemical, and possibly physiological, entities based on the solubilities of specific lipids/proteins in each type of detergent.  相似文献   

12.
Turnover of myelin and other structural proteins in the developing rat brain   总被引:13,自引:5,他引:8  
1. Protein metabolism of myelin and other subcellular components from developing rat brain was studied for periods from 5h to 210 days after intraperitoneal injection of [(3)H]lysine and [(14)C]glucose. 2. Half-lives for total brain proteins (t(0.5)) were 27 days after [(3)H]lysine and 4 days after [(14)C]glucose injection. 3. Factors accounting for the difference in the turnover rates obtained with different precursors, and the problem of reutilization of the label were investigated. 4. The catabolism of purified myelin proteins was studied and the half-lives of individual myelin proteins were calculated. 5. Myelin basic proteins turned over at two different rates. Half-life of the fast component of myelin basic proteins was 19-22 days and the slow component exhibited a high degree of metabolic stability. 6. Proteolipid protein underwent slow turnover. High-molecular-weight Wolfgram (1966) proteins underwent (relatively) fast metabolism (t(0.5) of 17-22 days).  相似文献   

13.
Rodent and primate lung surfactant was studied at the ultrastructural level utilizing procedures that retained most of the carbohydrates and lipids in thin section. The three-dimensional aspect of tubular myelin surfactant was observed to be four, lipid bilayer membranes oriented at right angles so that in cross-section it was square. In longitudinal section it appeared as two parallel lipid bilayers. Inside the tubular myelin was a homogeneous matrix material that completely filled the tubule except for a small, central area. A single multilamellar body, after it expanded and rearranged lamellae to form tubular myelin surfactant, still retained its basic morphology so that it was possible to determine the number and orientation of bodies that comprised a given surfactant area. This enabled quantification of surfactant by serial sectioning. Each transformed multilamellar body was observed to contain from 2 to 13 groups of tubular myelin, oriented at angles within the transformed body. With three-dimensional understanding, many of the areas previously reported to be homogeneous were determined to actually be oblique cross or longitudinal sections through tubular myelin surfactant.Five distinct layers characterized tubular myelin surfactant: (1) Unexpanded layer—up to 63 recently secreted multilamellar bodies. (2) Formation layerp?aired lamellae expanding and rearranging to form tubules. (3) Mature layer—tubular myelin surfactant. (4) Air-surfactant interface layer—usually a single lipid bilayer which was the outermost layer of tubular myelin of from 1 to 12 transformed multilamellar bodies. (5) Degraded surfactant layer—lipid bilayer spheres were formed at the interface and degraded in the alveolar space.  相似文献   

14.
Synthesis and incorporation of myelin polypeptides into CNS myelin   总被引:17,自引:6,他引:11       下载免费PDF全文
The distribution of newly synthesized proteolipid protein (PLP, 23 kdaltons) and myelin basic proteins (MBPs, 14-21.5 kdaltons) was determined in microsomal and myelin fractions prepared from the brainstems o1 10-30 d-old rats sacrificed at different times after an intracranial injection of 35S-methionine. Labeled MBPs were found in the myelin fraction 2 min after the injection, whereas PLP appeared first in the rough microsomal fraction and only after a lag of 30 min in the myelin fraction. Cell-free translation experiments using purified mRNAs demonstrated that PLP and MBPs are synthesized in bound and free polysomes, respectively. A mechanism involving the cotranslational insertion into the ER membrane and subsequent passage of the polypeptides through the Golgi apparatus is consistent with the lag observed in the appearance of the in vivo-labeled PLP in the myelin membrane. Newly synthesized PLP and MBPs are not proteolytically processed, because the primary translation products synthesized in vitro had the same electrophoretic mobility and N-terminal amino acid sequence as the mature PLP and MBP polypeptides. It was found that crude myelin fractions are highly enriched in mRNAs coding for the MBPs but not in mRNA coding for PLP. This suggests that whereas the bound polysomes synthesizing PLP are largely confined to the cell body, free polysomes synthesizing MBPs are concentrated in oligodendrocyte processes involved in myelination, which explains the immediate incorporation of MBPs into the developing myelin sheath.  相似文献   

15.
Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) activity for myelin basic protein was found to be present in the myelin fraction of rat brain. The enzyme activity was in a latent form and solubilized by 0.2% Triton X-100 treatment with about 50% increase of activity. The cytosol fraction from bovine brain also had phosphoprotein phosphatase activity for myelin basic protein, which was resolved into at least two peaks of activity on DEAE-cellulose column chromatography. Myelin basic protein was the best substrate for both the solubilized myelin fraction and the cytosol enzymes among the substrate proteins tested. The Km values of the solubilized myelin fraction were 4.2 muM for myelin basic protein, 7.4 muM for arginine-rich histone, 8.0 muM for histone mixture and 14.3 muM for protamine, respectively.  相似文献   

16.
C E Blanchard  G Allt 《Acta anatomica》1988,131(3):210-214
Using filipin as a cytochemical probe for cholesterol we have compared the distribution of filipin labelling in mildly disrupted myelin and normal myelin. The myelin lamellae in rat sciatic nerve were separated either by hypotonic saline (0.035-0.07 M) or nerve section (24-32 h) before aldehyde fixation and filipin treatment. Myelin separation was assessed in ultrathin sections and filipin distribution in freeze-fracture replicas. In separated myelin lamellae filipin labelling was similar throughout the myelin sheath while in normal control myelin filipin occurred most in the outer (abaxonal), least in the inner (adaxonal) and intermediate in the middle lamellae. It is concluded that this heterogeneous filipin labelling in normal myelin is a result of diffusion gradients to filipin within the myelin sheath and that in vivo cholesterol is uniformly distributed throughout all the lamellae of the myelin sheath. The site of the diffusion barrier to filipin within normal myelin is considered.  相似文献   

17.
T-Cell lines which responded by proliferation to the autoantigen, myelin basic protein (MBP), were isolated from the blood of six of nine normal humans. These T-cell lines could be maintained in in vitro culture for up to 2 months through the use of Interleukin 2 and repeated MBP stimulation. Optimal antigen-induced proliferation required both antigen and antigen-presenting cells found in the adherent cell population of autologous peripheral blood mononuclear cells (PBM). The T-cell lines were predominantly of the helper phenotype (OKT3+, OKT4+, OKT8-) and responded to both human and guinea pig myelin basic protein.  相似文献   

18.
The protein composition of myelin isolated from the CNS of four different fish species (trout, goldfish, eel, Tilapia) was analysed by SDS-polyacrylamide gel electrophoresis and compared with that of pig and rat brain. Thereby the following features were found typical to the myelin of fish: (1) a basic protein of particular low molecular weight, (2) the entire absence of Wolfgram protein, (3) the appearance of an additional major component of medium molecular weight (around 36,000) and (4) a strong Con A-affinity exhibited by the intermediate proteins, being most clearly discernible in trout and eel myelin. During development of the trout brain, in particular, a myelin fraction could first be isolated from the brainstem at 14 days after hatching and the myelin yield steadily increased during the first year of life. In tectum and cerebellum main myelin accumulation was stated during the third and seventh month. Concomittantly marked changes in the relative distribution of major myelin proteins were observed: especially the IP1-protein showed a marked increase during the first half year, whilst the relative amount of the 36-K protein was gradually declining during the same time.  相似文献   

19.
20.
Myelin was isolated from the brains of mice 15, 20, 30, and 60 days after birth. The total amount of basic protein present in the isolated myelin was determined by radioimmunoassay. The 4 myelin basic proteins, with molecular weights of 21,500, 18,500, 17,000 and 14,000, were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and their relative amounts were determined densitometrically. The absolute amount of each of the basic proteins was calculated from its relative amount on the gel and from the total amount of myelin basic protein in the sample as determined by radioimmunoassay. The results show that between 10 and 30 days after birth each protein accumulates at a characteristic rate so that the molar ratios among the 4 basic proteins are (in descending order according to their molecular weights) 1:5:2:10 during this period. Between 30 and 60 days after birth the 14 K and 18.5 K proteins continue to accumulate at reduced rates while the 21.5 K and 17 K proteins begin to disappear from the myelin membrane; 60 days after birth the molar ratios among the 4 basic proteins are 1:10:3.5:35. These developmental patterns of accumulation are discussed in relation to the possible role of each of the 4 myelin basic proteins in myelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号