首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we have evaluated the effect of maximal incremental cycling exercise (IE) on the systemic release of prostacyclin (PGI(2)), assessed as plasma 6-keto-PGF(1alpha) concentration in young healthy men. Eleven physically active - untrained men (mean +/- S.D.) aged 22.7 +/- 2.1 years; body mass 76.3 +/- 9.1 kg; BMI 23.30 +/- 2.18 kg . m(-2); maximal oxygen uptake (VO(2max)) 46.5 +/- 3.9 ml . kg(-1) . min(-1), performed an IE test until exhaustion. Plasma concentrations of 6-keto-PGF(1alpha), lactate, and cytokines were measured in venous blood samples taken prior to the exercise and at the exhaustion. The net exercise-induced increase in 6-keto-PGF(1alpha) concentration, expressed as the difference between the end-exercise minus pre-exercise concentration positively correlated with VO(2max) (r=0.78, p=0.004) as well as with the net VO(2) increase at exhaustion (r=0.81, p=0.003), but not with other respiratory, cardiac, metabolic or inflammatory parameters of the exercise (minute ventilation, heart rate, plasma lactate, IL-6 or TNF-alpha concentrations). The exercise-induced increase in 6-keto-PGF(1alpha) concentration?? was significantly higher (p=0.008) in a group of subjects (n=5) with the highest VO(2max) when compared to the group of subjects with the lowest VO(2max), in which no increase in 6-keto-PGF(1alpha) concentration was found. In conclusion, we demonstrated, to our knowledge for the first time, that exercise-induced release of PGI(2) in young healthy men correlates with VO(2max), suggesting that vascular capacity to release PGI(2) in response to physical exercise represents an important factor characterizing exercise tolerance. Moreover, we postulate that the impairment of exercise-induced release of PGI(2) leads to the increased cardiovascular hazard of vigorous exercise.  相似文献   

2.
The aim of this work was to evaluate the effect of different intensity of exercise and different training status on antioxidants and cholesterol profile in cyclists. 33 male cyclists (17 amateur and 16 professional cyclists) participated in this study. The amateurs all trained 14 +/- 1 h each week, and their VO(2) max was 62.5 +/- 1.8 ml/Kg x min; the professionals all trained 24 +/- 1 h each week, and their VO(2) max was 80.2 +/- 1.6 ml/Kg x min. Amateurs were submitted to the maximal and submaximal prolonged exercise tests. Professionals were submitted to a mountain stage (170 km) of cycling competition. Serum lipid and cholesterol profile (triglycerides, total cholesterol, HDL-cholesterol, LDL-cholesterol and VLDL-cholesterol) and plasma antioxidant capacity (ascorbic acid, alpha-tocopherol, retinol, beta-carotene and others) were measured before and after exercise tests. Hematological determinations (number of erythrocytes, hematocrit and hemoglobin concentration) and dietary intake were also measured. No significant differences were observed in basal values (before exercise tests) of amateur and professional cyclists. Negligible differences were found between dietary intake of amateur and professional cyclists, and also the results of hematological values showed there was no effect of degree of hydration or dietary intake on blood levels of studied antioxidant and lipid parameters. An increase in plasma levels of vitamin C, vitamin E, triglycerides and VLDL-cholesterol levels, and also a decrease of beta-carotene and LDL-cholesterol. were observed in well-trained professional cyclists after the cycling stage - an endurance exercise--but not in amateur cyclists. Amateur cyclists showed only mild increases in total cholesterol after maximal and submaximal exercise, while a rise in HDL-cholesterol was only observed after maximal exercise; none of these changes were observed in professional cyclists. Plasma levels of antioxidant vitamins and carotenes, and also serum lipids, total cholesterol and lipoprotein-cholesterol showed an overall response to exercise, and their increase and/or decrease must be explained as a consequence of the different training status of sportsmen and intensity and duration of exercise tests.  相似文献   

3.
Seven trained male cyclists (VO2max = 4.42 +/- 0.23 l.min-1; weight 71.7 +/- 2.7 kg, mean +/- SE) completed two incremental cycling tests on the cycle ergometer for the estimation of the "individual anaerobic threshold" (IAT). The cyclists completed three more exercises in which the work rate incremented by the same protocol, but upon reaching selected work rates of approximately 40, 60 and 80% VO2max, the subjects cycled for 60 min or until exhaustion. In these constant load studies, blood lactate concentration was determined on arterialized venous ([La-]av) and deep venous blood ([La-]v) of the resting forearm. The av-v lactate gradient across the inactive forearm muscle was -0.08 mmol.l-1 at rest. After 3 min at each of the constant load work rates, the gradients were +0.05, +0.65* and +1.60* mmol.l-1 (*P less than 0.05). The gradients after 10 min at these same work rates were -0.09, +0.24 and +1.03* mmol.l-1. For the two highest work rates taken together, the lactate gradient was less at 10 min than 3 min constant load exercise (P less than 0.05). The [La-]av was consistently higher during prolonged exercise at both 60 and 80% VO2max than that observed at the same work rate during progressive exercise. At the highest work rate (at or above the IAT), time to exhaustion ranged from 3 to 36 min in the different subjects. These data showed that [La-] uptake across resting muscle continued to increase to work rates above the IAT. Further, the greater av-v lactate gradient at 3 min than 10 min constant load exercise supports the concept that inactive muscle might act as a passive sink for lactate in addition to a metabolic site.  相似文献   

4.
This study was designed to examine the effects of alterations in dietary carbohydrate (CHO) intake on the performance of high-intensity exercise lasting approximately 10 min (EXP 1) and 30 min (EXP 2). Trained subjects exercised to exhaustion on four occasions on a cycle ergometer at 90% of maximal oxygen consumption (VO2max; EXP 1, n = 5) and 80% of VO2max (EXP 2, n = 7). The first two tests were familiarisation trials and were carried out following the subjects' normal diet. Normal training was continued but standardised during the periods of dietary control. The subsequent two tests were performed 2 weeks apart after 7 days of dietary manipulation. The two diets were a 70% and a 40% CHO diet, isoenergetic with each subject's normal diet and administered in a randomised order. At both exercise intensities, time to exhaustion following the high CHO and low CHO diets was not different [mean (SD) EXP 1: 11.56 (3.78) min and 8.95 (2.35) min, P = 0.22; EXP 2: 26.9 (7.4) min and 26.5 (6.5) min, P = 0.90]. No differences in resting blood metabolite concentrations were found apart from a lower beta-hydroxybutyrate (beta-HB) level following the high CHO diet in EXP 2. Blood lactate was higher after exercise at 90% of VO2max following the high CHO diet. Blood lactate was higher, and beta-HB lower during exercise at 80% of VO2max following the high CHO diet. No differences were found in the other blood metabolites tested. The respiratory exchange ratio after 15 min of exercise at 80% of VO2max was higher on the high CHO diet. No differences in oxygen uptake, heart rate (EXP 2) or ratings of perceived exertion (both experiments) were found between conditions. These results indicate that moderate changes in diet composition during training do not affect the performance of high-intensity exercise in trained individuals when the total energy intake is moderately high.  相似文献   

5.
Nine subjects (VO2max 65 +/- 2 ml.kg-1.min-1, mean +/- SEM) were studied on two occasions following ingestion of 500 ml solution containing either sodium citrate (C, 0.300 g.kg-1 body mass) or a sodium chloride placebo (P, 0.045 g.kg-1 body mass). Exercise began 60 min later and consisted of cycle ergometer exercise performed continuously for 20 min each at power outputs corresponding to 33% and 66% VO2max, followed by exercise to exhaustion at 95% VO2max. Pre-exercise arterialized-venous [H+] was lower in C (36.2 +/- 0.5 nmol.l-1; pH 7.44) than P (39.4 +/- 0.4 nmol.l-1; pH 7.40); the plasma [H+] remained lower and [HCO3-] remained higher in C than P throughout exercise and recovery. Exercise time to exhaustion at 95% VO2max was similar in C (310 +/- 69 s) and P (313 +/- 74 s). Cardiorespiratory variables (ventilation, VO2, VCO2, heart rate) measured during exercise were similar in the two conditions. The plasma [citrate] was higher in C at rest (C, 195 +/- 19 mumol.l-1; P, 81 +/- 7 mumol.l-1) and throughout exercise and recovery. The plasma [lactate] and [free fatty acid] were not affected by citrate loading but the plasma [glycerol] was lower during exercise in C than P. In conclusion, sodium citrate ingestion had an alkalinizing effect in the plasma but did not improve endurance time during exercise at 95% VO2max. Furthermore, citrate loading may have prevented the stimulation of lipolysis normally observed with exercise and prevented the stimulation of glycolysis in muscle normally observed in bicarbonate-induced alkalosis.  相似文献   

6.
The objective of the present study was to compare pulmonary gas exchange kinetics (VO2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO2max) and the intensity associated with the achievement of VO2max (IVO2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO2max to determine the time to exhaustion at IVO2max (Tlim) and the time constant of oxygen uptake kinetics (tau). The tau was significantly faster in trained group, both in cycling (EC = 28.2 +/- 4.7s; UC = 63.8 +/- 25.0s) and in running (ER = 28.5 +/- 8.5s; UR = 59.3 +/- 12.0s). Tlim of untrained was significantly lower in cycling (EC = 384.4 +/- 66.6s vs. UC; 311.1 +/- 105.7 s) and higher in running (ER = 309.2 +/- 176.6 s vs. UR = 439.8 +/- 104.2 s). We conclude that the VO2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO2max in running and cycling.  相似文献   

7.
Six trained male cyclists and six untrained sedentary men were studied to determine whether the plasma lactate threshold (PLT) and ventilation threshold (VT) occur at the same work rate in both fit and unfit populations. The PLT was determined from a marked increase in plasma lactate concentration ([La]) and VT from a nonlinear increase in expired minute ventilation (VE) during incremental leg-cycling tests; work rate was increased 30 W every 2 min until volitional exhaustion. The trained subjects' mean VO2 max (63.8 ml O2 X kg-1 X min-1) and VT (65.8% VO2 max) were significantly higher (P less than 0.05) than the untrained subjects' mean VO2max (35.5 ml O2 X kg-1 X min-1) and VT (51.4% VO2 max). The trained subjects' mean PLT (68.8% VO2 max) and VT did not differ significantly, but the untrained subjects' mean PLT (61.6% VO2 max) was significantly higher than their VT. The trained subjects' mean peak [La] (10.5 mmol X l-1) did not differ significantly from the untrained subjects' mean peak [La] (11.5 mmol X l-1). However, the time of appearance of the peak [La] during passive recovery was inversely related to VO2 max. These results suggest that variance in lactate diffusion and/or removal processes between the trained and untrained subjects may account in part for the different relationships between the VT and PLT in each population.  相似文献   

8.
Determinants of endurance in well-trained cyclists   总被引:7,自引:0,他引:7  
Fourteen competitive cyclists who possessed a similar maximum O2 consumption (VO2 max; range, 4.6-5.0 l/min) were compared regarding blood lactate responses, glycogen usage, and endurance during submaximal exercise. Seven subjects reached their blood lactate threshold (LT) during exercise of a relatively low intensity (group L) (i.e., 65.8 +/- 1.7% VO2 max), whereas exercise of a relatively high intensity was required to elicit LT in the other seven men (group H) (i.e., 81.5 +/- 1.8% VO2 max; P less than 0.001). Time to fatigue during exercise at 88% of VO2 max was more than twofold longer in group H compared with group L (60.8 +/- 3.1 vs. 29.1 +/- 5.0 min; P less than 0.001). Over 92% of the variance in performance was related to the % VO2 max at LT and muscle capillary density. The vastus lateralis muscle of group L was stressed more than that of group H during submaximal cycling (i.e., 79% VO2 max), as reflected by more than a twofold greater (P less than 0.001) rate of glycogen utilization and blood lactate concentration. The quality of the vastus lateralis in groups H and L was similar regarding mitochondrial enzyme activity, whereas group H possessed a greater percentage of type I muscle fibers (66.7 +/- 5.2 vs. 46.9 +/- 3.8; P less than 0.01). The differing metabolic responses to submaximal exercise observed between the two groups appeared to be specific to the leg extension phase of cycling, since the blood lactate responses of the two groups were comparable during uphill running. These data indicate that endurance can vary greatly among individuals with an equal VO2 max.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study investigated the cardiovascular and metabolic responses to prolonged wheelchair exercise in a group of highly trained, traumatic paraplegic men. Six endurance-trained subjects with spinal cord lesions from T10 to T12/L3 underwent a maximal incremental exercise test in which they propelled their own track wheelchairs on a motor-driven treadmill to exhaustion to determine maximal O2 uptake (VO2max) and related variables. One week later each subject exercised in the same wheelchair on a motorized treadmill at 60-65% of VO2max for 80 min in a thermoneutral environment (dry bulb 22 degrees C, wet bulb 17 degrees C). Approximately 10 ml of venous blood were withdrawn both 20 min and immediately before exercise (0 min), after 40 and 80 min of exercise, and 20 min postexercise. Venous blood was analyzed for hematocrit (Hct), hemoglobin (Hb), and lactate, and the separated plasma was analyzed for glucose, K+, Na+, Cl-, free fatty acid (FFA), and osmolality. VO2, CO2 production (VCO2), minute ventilation (VE), respiratory exchange ratio (R), net efficiency, and wheelchair strike rate were determined at four intervals throughout the exercise period. Data were analyzed with an analysis of variance repeated-measures design and a Scheffé post hoc test. VO2max was 47.5 +/- 1.8 (SE) ml.min-1.kg-1 with maximal VE BTPS and maximal heart rate (HR) being 100.1 +/- 3.8 l/min and 190 +/- 1 beats/min, respectively. During prolonged exercise there were no significant changes in VO2, VCO2, VE, R, net efficiency, wheelchair strike rate, and lactate, glucose, and Na+ concentrations. Significant increases occurred in HR, FFA, K+, Cl-, osmolality, Hb, and Hct throughout exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The restorative capacities of a high carbohydrate-protein (CHO-PRO) beverage containing electrolytes and a traditional 6% carbohydrate-electrolyte sports beverage (SB) were assessed after glycogen-depleting exercise. Postexercise ingestion of the CHO-PRO beverage, in comparison with the SB, resulted in a 55% greater time to exhaustion during a subsequent exercise bout at 85% maximum oxygen consumption (VO(2)max). The greater recovery after the intake of the CHO-PRO beverage could be because of a greater rate of muscle glycogen storage. Therefore, a second study was designed to investigate the effects of after exercise CHO-PRO and SB supplements on muscle glycogen restoration. Eight endurance-trained cyclists (VO(2)max = 62.1 +/- 2.2 ml.kg(-1) body wt.min(-1)) performed 2 trials consisting of a 2-hour glycogen-depletion ride at 65-75% VO(2)max. Carbohydrate-protein (355 ml; approximately 0.8 g carbohydrate (CHO).kg(-1) body wt and approximately 0.2 g protein.kg(-1) body wt) or SB (355 ml; approximately 0.3 g CHO.kg(-1) body wt) was provided immediately and 2 hours after exercise. Trials were randomized and separated by 7-15 days. Ingestion of the CHO-PRO beverage resulted in a 17% greater plasma glucose response, a 92% greater insulin response, and a 128% greater storage of muscle glycogen (159 +/- 18 and 69 +/- 32 micromol.g(-1) dry weight for CHO-PRO and SB, respectively) compared with the SB (p < 0.05). These findings indicate that the rate of recovery is coupled with the rate of muscle glycogen replenishment and suggest that recovery supplements should be consumed to optimize muscle glycogen synthesis as well as fluid replacement.  相似文献   

12.
Oxygen consumption and metabolic strain in rowing ergometer exercise   总被引:2,自引:0,他引:2  
Oxygen consumption (VO2) when rowing was determined on a mechanically braked rowing ergometer (RE) with an electronic measuring device. VO2 was measured by an open spirometric system. The pneumotachograph valve was fixed to the sliding seat, thus reducing movement artefacts. A multi-stage test was performed, beginning with a work load of 150 W and increasing by 50 W every 2 minutes up to exhaustion. Serum lactate concentrations were determined in a 30 s break between the work stages. 61 examinations of oarsmen performing at maximum power of 5 W X kg-1 or more were analysed VO2 and heart rate (HR) for each working stage were measured and the regression line of VO2 on the work load (P) and an estimation error (Sxy) were calculated: VO2 = 12.5 X P + 415.2 (ml X min-1) (Sxy = +/- 337 ml, r = 0.98) Good reproducibility was found in repeated examinations. Similar spiroergometry was carried out on a bicycle ergometer (BE) with 10 well trained rowers and 6 trained cyclists. VO2 of rowing was about 600 ml X min-1 higher than for bicycling in the submaximal stages for both groups. The VO2max of RE exercise was 2.6% higher than for oarsmen on BE, and the cyclists reached a greater VO2 on BE than the oarsmen. No differences were found between RE and BE exercise heart rate. The net work efficiency when rowing was 19% for both groups, experienced and inexperienced: when cycling it was 25% for cyclists and 23% for oarsmen.  相似文献   

13.
This study determined maximal O2 uptake (VO2max), maximal O2 deficit, and O2 debt in the Thoroughbred racehorse exercising on an inclined treadmill. In eight horses the O2 uptake (VO2) vs. speed relationship was linear until 10 m/s and VO2max values ranged from 131 to 153 ml.kg-1.min-1. Six of these horses then exercised at 120% of their VO2max until exhaustion. VO2, CO2 production (VCO2), and plasma lactate (La) were measured before and during exercise and through 60 min of recovery. Muscle biopsies were collected before and at 0.25, 0.5, 1, 1.5, 2, 5, 10, 15, 20, 40, and 60 min after exercise. Muscle concentrations of adenosine 5'-triphosphate (ATP), phosphocreatine (PC), La, glucose 6-phosphate (G-6-P), and creatine were determined, and pH was measured. The O2 deficit was 128 +/- 32 (SD) ml/kg (64 +/- 13 liters). The O2 debt was 324 +/- 62 ml/kg (159 +/- 37 liters), approximately two to three times comparative values for human beings. Muscle [ATP] was unchanged, but [PC] was lower (P less than 0.01) than preexercise values at less than or equal to 10 min of recovery. [PC] and VO2 were negatively correlated during both the fast and slow phases of VO2 during recovery. Muscle [La] and [G-6-P] were elevated for 10 min postexercise. Mean muscle pH decreased from 7.05 (preexercise) to 6.75 at 1.5 min recovery, and the mean peak plasma La value was 34.5 mmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This investigation examined the relationship among plasma catecholamines, the blood lactate threshold (TLa), and the ventilatory threshold (TVE) in highly trained endurance athletes. Six competitive cyclists and six varsity cross-country runners performed a graded exercise test via two different modalities: treadmill running and bicycle ergometry. Although maximal oxygen consumption (VO2 max) did not differ significantly for the cyclists for treadmill running and cycling (64.6 +/- 1.0 and 63.5 +/- 0.4 ml O2.kg-1-min-1, respectively), both TLa and TVE occurred at a relatively earlier work load during the treadmill run. The opposite was true for the runners as TLa and TVE appeared at an earlier percent of VO2max during cycling compared with treadmill running (60.0 +/- 1.7 vs. 75.0 +/- 4.0%, respectively, TLa). The inflection in plasma epinephrine shifted in an identical manner and occurred simultaneously with that of TLa (r = 0.97) regardless of the testing protocol or training status. Although a high correlation (r = 0.86) existed for the shift in TVE and TLa, this relationship was not as strong as was seen with plasma epinephrine. The results suggest that a causal relationship existed between the inflection in plasma epinephrine and TLa during a graded exercise test. This association was not as strong for TVE and TLa.  相似文献   

15.
16.
The aim of this study was to examine the relationship between the content of various types of myosin heavy chain isoforms (MyHC) in the vastus lateralis muscle and pulmonary oxygen uptake during moderate power output incremental exercise, performed at low and at high pedalling rates. Twenty one male subjects (mean +/- SD) aged 24.1 +/- 2.8 years; body mass 72.9 +/- 7.2 kg; height 179.1 +/- 4.8 cm; BMI 22.69 +/- 1.89 kg.m(-2); VO2max 50.6 +/- 5.3 ml.kg.min(-1), participated in this study. On separate days, they performed two incremental exercise tests at 60 rev.min(-1) and at 120 rev.min(-1), until exhaustion. Gas exchange variables were measured continuously breath by breath. Blood samples were taken for measurements of plasma lactate concentration prior to the exercise test and at the end of each step of the incremental exercise. Muscle biopsies were taken from the vastus lateralis muscle, using Bergstr?m needle, and they were analysed for the content of MyHC I and MyHC II using SDS--PAGE and two groups (n=7, each) were selected: group H with the highest content of MyHC II (60.7 % +/- 10.5 %) and group L with the lowest content of MyHC II (27.6 % +/- 6.1 %). We have found that during incremental exercise at the power output between 30-120 W, performed at 60 rev.min(-1), oxygen uptake in the group H was significantly greater than in the group L (ANCOVA, p=0.003, upward shift of the intercept in VO2/power output relationship). During cycling at the same power output but at 120 rev.min(-1), the oxygen uptake was also higher in the group H, when compared to the group L (i.e. upward shift of the intercept in VO2/power output relationship, ANCOVA, p=0.002). Moreover, the increase in pedalling rate from 60 to 120 rev.min(-1) was accompanied by a significantly higher increase of oxygen cost of cycling and by a significantly higher plasma lactate concentration in subjects from group H. We concluded that the muscle mechanical efficiency, expressed by the VO2/PO ratio, during cycling in the range of power outputs 30-120 W, performed at 60 as well as 120 rev.min(-1), is significantly lower in the individuals with the highest content of MyHC II, when compared to the individuals with the lowest content of MyHC II in the vastus lateralis.  相似文献   

17.
The purpose of this study was to examine plasma and intraerythrocyte lactate concentrations during graded exercise in humans. Seven adult volunteers performed a maximum O2 uptake (VO2max) test on a cycle ergometer. Plasma and intraerythrocyte lactate concentrations (mmol . L-1 of plasma or cell water) were determined at rest, during exercise, and at 15-min post-exercise. The results show that plasma and intraerythrocyte lactate concentrations were not significantly different from each other at rest or moderate (less than or equal to 50% VO2max) exercise. However, the plasma concentrations were significantly increased over the intraerythrocyte levels at 75% and 100% VO2max. The plasma to red cell lactate gradient reached a mean (+/- SE) 1.7 +/- 0.4 mmol . L-1 of H2O at exhaustion, and was linearly (r = 0.84) related to the plasma lactate concentration during exercise. Interestingly, at 15-min post-exercise the direction of the lactate gradient was reversed, with the mean intraerythrocyte concentration now being significantly increased over that found in the plasma. These results suggest that the erythrocyte membrane provides a barrier to the flux of lactate between plasma and red cells during rapidly changing blood lactate levels. Furthermore, these data add to the growing body of research that indicates that lactate is not evenly distributed in the various water compartments of the body during non-steady state exercise.  相似文献   

18.
In order to examine thermoregulatory response to creatine (CR) supplementation, competitive male cyclists and triathletes (n = 7, VO2max = 50.6 +/- 0.8 ml x kg(-1) x min(-1)) completed three 1-hour hyperthermic (ambient temperature = 38.7 +/- 1.0 degrees C, relative humidity = 33 +/- 4%) exercise sessions at 181 +/- 12 W (50% of Wmax, approximately 66% of VO2max). Subjects completed a baseline (BL) session, then 2 sessions following 5 days of CR (20 g x d(-1)) and placebo (PL, 20 g x d(-1)) administered in a double-blind counterbalanced crossover manner with > or = 28-day washout. Pre-exercise BL, CR, and PL body mass were unchanged, with similar decreases in postexercise mass among the three conditions. Tympanic temperature, heart rate, systolic blood pressure, perceived exertion, and lactate, cortisol, and aldosterone concentrations increased similarly during BL, CR, and PL exercise. A greater (p = 0.013) estimated decrease in plasma volume occurred following BL (-16.5 +/- 2.0%) and PL (-17.6 +/- 1.7%) exercise compared to CR (-13.5 +/- 2.1%). Creatine supplementation reduces plasma volume loss during 1 hour of hyperthermic exercise but does not appear to otherwise change thermoregulatory response to hyperthermic exercise.  相似文献   

19.
This study was undertaken to investigate whether part of the ammonia formed during muscular exercise was excreted with the sweat. Male medical students volunteered for the experiment. They exercised 30 min on a bicycle ergometer at 80 and 40% of the predetermined maximal O2 uptake (VO2max). Exercise at 80% VO2max was performed twice, at room temperature (20 degrees C) and in a cold room (0 degrees C), whereas exercise at 40% was performed only at room temperature (20 degrees C). Blood was collected from the antecubital vein immediately before and after exercise. Sweat was collected from the hypogastric region by use of gauze pads. It was shown that the plasma ammonia level was elevated after exercise at 80% VO2max and remained stable after exercise at 40% VO2max. The volume of sweat produced during exercise at 80% VO2max at 20 degrees C was 428 +/- 138 ml and at 0 degrees C 245 +/- 86 ml and during exercise at 40% VO2max was 183 +/- 69 ml. The ammonia concentration in the sweat after exercise at 80% VO2max at 20 degrees C was 7,140 mumol/l and at 0 degrees C 11,816 mumol/l. After exercise at 40% VO2max, it was 2,076 mumol/l. The total ammonia lost through the sweat during exercise at 80% VO2max was similar at both temperatures, despite the difference in the sweat volume (at 20 degrees C, 3,360 +/- 2,080 mumol; at 0 degrees C, 3,310 +/- 1,250 mumol). During exercise at 40% VO2max, it was 350 +/- 230 mumol. These results show that part of ammonia formed during exercise is lost with sweat. The amount lost increases with increased work rate and the plasma ammonia concentration.  相似文献   

20.
This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P < 0.05). No significant differences were detected between N and N/NO or between H and H/NO for Pa(O(2)), Sa(O(2)) and A-aDO(2) (P > 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号