首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new-H-2 mutant involving theH-2 d haplotype is described — C.B6-H- 2dm4 (dm4). This mutant strain carries a gain and loss mutation which maps to theK d gene of theH-2 complex. Serological testing comparing the mutant and the parental BALB/cKh strain failed to detect any difference between the two strains and no antibodies could be produced, although a reciprocal mixed lymphocyte reaction was observed between mutant and parent.  相似文献   

2.
Two new C57BL/6H-2 mutants,B6.C-H- 2bm13 and B6.C-H- 2bm14 are described. They arose independently in C57BL/6 as spontaneous mutations of the gain and loss type. Complementation studies map the mutations in both bm13 and bm14 to theH-2D b gene. How ever, these two mutant strains are not identical, but occurred as independent mutations at the same locus, as shown by reciprocal graft rejection and by the inability of the (bm13 × bm114)F1 hybrid to accept C57BL/6 grafts. Serological studies by direct testing (cytotoxicity and hemagglutination) and by quantitative absorption demonstrated a decrease in the H-2Db private specificity H-2.2 in both bm13 and bm14 when compared to C57BL/6. This was confirmed by SDS-PAGE analysis using antisera detecting the H-2.2 specificity. Attempts to produce antibodies to either the gained or lost specificities of the two mutant strains failed.  相似文献   

3.
Lymph-node cells fromH-2 allogeneic, intra-H-2 recombinant andH-2 mutant congenic strains were sensitized in limiting dilution cultures to quantitate the cytotoxic T-lymphocyte precursor frequencies (CTL.Pf) against antigens encoded by different regions of theH-2 complex. When fourH-2K b mutants of C57BL/6 (B6) were tested, we observed anti-B6 CTL.Pf that were as high or higher than those of recombinant strains which differ from B6 at theK end of theH-2 complex. Relative to strains completelyH–2 allogeneic to B6, the CTL.Pf inH-2 bm1,H-2 bm3 andH-2 bm5 averaged 40–50 percent, andH-2 bm8 averaged 140 percent. Recombinant strains B10.A (4R) and B10.D2 (R103), which differ from B6 at theK end of theH-2 complex, averaged 60 percent of the completelyH-2 allogeneic value. Since the mutant and wild-type gene products have no serological and minimal structural differences relative to other alleles atH-2K, these results indicate that the CTL.Pf does not increase with increasing H-2 antigenic disparity between any two strains. Rather, the data suggests that the T-cell receptor repertoire recognizes those H-2 molecules or determinants closest to self.  相似文献   

4.
C57BL/6 (H-2 b ) mice, and four mutants (B6.C-H-2 ba , B6-H-2 bg1 , B6-H-2 bg2 , B6-H-2 bh ) derived from this strain after separate mutations had occurred at the same locus within theH-2 complex, were analyzed to determine whether the mutations had led to anyH-2 (or Ia) difference which could be detected serologically. The strains were typed directly with antisera specific for H-2K and H-2D public and private specificities and for the Ia specificities; quantitative absorption studies were also performed for the relevant H-2Kb, H-2Dd and Iab specificities. In no case was any quantitative or qualitative difference detected serologically between any of the strains. In addition, by using a variety of techniques to produce and assay for antibody, we failed to produce any antisera between the parental strains and the four mutants. TheH-2 mutations therefore appear to give rise to a type of antigenic specificity which is recognized byT cells and which generateT, but notB cell responses; nor are they recognized by H-2 or Ia alloantisera. The location of the mutating locus within theH-2 complex was shown by the complementation method to be within theK orIA region and not in theIB region, since crosses of the mutant strains with B10.A(4R) or D2.GD failed to complement for a subsequent C57BL/6 skin graft.  相似文献   

5.
The line B6.M505 is congenic with C57BL/6JY and carries a mutant form of theH-2 b haplotype designatedH-2 bd . The mutant site 505 was located by the F1 tests in theK end of theH-2 gene complex. The M505 mice are histoincompatible with the B6.C(Hz1) line (haplotypeH-2 ba ) carrying another mutation in theK end ofH-2 b . Inability of M505 to complement Hz1 in tests with B6 skin grafting is considered as an evidence that the same gene was altered by both mutations. The gained H antigens of two mutants can cross-react in vivo as revealed by accelerated rejection of Hz1 skin grafts by B6 recipients presensitized with M505 spleen cells. The lost antigenic determinants are not identical as shown by accelerated rejection of B6 skin grafts by Hz1 hosts preimmunized with M505 spleen cells. Absorptions of the antiserum ASY-015, (d×a) anti-i, anti-H-2.33 with M505 spleen cells did not clear forH-2 i ,H-2 b andH-2 ba , and absorptions with Hz1 did not clear forH-2 i ,H-2 b , andH-2 bd . These results show that changes of histocompatibility determinants may be accompanied by loss of some haptenic determinants in the Hz1 and M505 mutations.  相似文献   

6.
A newH-2 mutant, BALB/c-H-2 db , is described. This mutant originated in BALB/c, is inbred, and is coisogenic with the parental BALB/cKh strain. The mutation is of the loss type since BALB/c-H- db rejects BALB/c, but not vice versa. Complementation studies have localized the mutation to theD region of theH-2 complex. A cross between BALB/c-H-2 db and B10.D2-H-2 da failed to complement for either BALB/c or B10.D2 skin grafts, indicating that these are two separate mutations at the same locus (Z2). Direct serological analysis and absorption studies revealed that, with one exception, theH-2 andIa specificities of BALB/c and BALB/c-H-2 db are identical. In particular,H-2.4, the H-2Dd private specificity, is quantitatively and qualitatively identical in the two strains. The exception is that of the specificities detected by antiserum D28b: (k×r)F1 anti-h, which contains anti-H-2.27, 28, and 29. These specificities appear to be absent from theH-2 db mutant since they are not detected directly or by absorption. Other public specificities are present in normal amounts,e.g., the reaction with antisera to H-2.3, 8, 13, 35, and 36. The reaction with antiserum D28 (f×k)F1 anti-s, which contains antibodies to H-2.28, 36, and 42, is the same in both strains. Antiserum made between the two strains (H-2 db anti-H-2 d ) reacts like an anti-H-2 serum, in that it reacts with both T and B cells by cytotoxicity, but is not a hemagglutinating antibody. The serum reacts as does the D28b serum in both strain distribution and in cross-absorption studies. We conclude that theH-2 db mutation occurred at a locus in theD region, resulting in the loss of the H-2.28 public serological specificity and of a histocompatibility antigen. Whether these are one and the same antigen is not yet known. The data, in view of other evidence, imply that the public and private specificities are coded for by separate genes.Abbreviations used in this paper are as follows CML cell-mediated lysis - MLR mixed lymphocyte reaction - GVHR graft-versus-host reaction - RFC rosette-forming cells - RAM-Ig rabbit anti-mouse IgG  相似文献   

7.
A newH-2 mutation was found in a mouse belonging to CBA/CaLacSto (H-2 k ) strain and designated 523, the proposed haplotype symbol for which isH-2 ka . The line CBA.M523 carries this mutation and is fully congenic with the parental strain, except for the mutant site 523. The mutation 523 is located within theK- end of theH-2 gene complex. Phenotypically, it causes prompt skin graft rejection and pronounced graft-versus-host activity in strain combination CBA/Sto⇄C-BA.M523. Attempts to produce active alloantisera in the same strain combination have so far been unsuccessful.  相似文献   

8.
The I-region gene products of 29 wild-derivedH-2 haplotypes on a B10 background (B10.W congenic lines) were typed with alloantisera which detect 17 inbred I-region antigens. Five new I-region antigens were defined by expanding the inbred line panel ofH-2 haplotypes to includeH-2 u , H-2v, andH-2 j . Based on serological analyses of the inbred and B10.W lines, the polymorphism of theIA gene (or genes) is estimated to be at a minimum of 15 alleles and theIE gene (or genes) at a minimum of 4 alleles. These results indicate that theIA subregion is more polymorphic than theIE subregion. By combining the I-region typing data with theH-2K andH-2D region typing data reported previously, a total of 11 new natural recombinants of inbredH-2 alleles were detected among the B10.W lines.  相似文献   

9.
Immune response (Ir) genes mapping in theI region of the mouseH-2 complex appear to regulate specifically the presentation of a number of antigens by macrophages to proliferating T cells. We have investigated the possibility that similarIr genes mapping in theH-2K andH-2D regions specifically regulate the presentation of target antigens to cytotoxic effector T cells. We report that the susceptibility of targets expressing specific non-H-2 H alloantigens to lysis by H-2-compatible, H-antigen-specific cytotoxic effector T cells is controlled by polymorphicH-2K/D genes. This control of susceptibility to lysis is accomplished through what we have defined operationally as antigen-specific regulation of non-H-2 H antigen immunogenicity. High immunogenicity of the H-4.2 alloantigen is determined by a gene mapping in theH-2K region ofH-2 b . However, high immunogenicity of H-7.1 is determined by a gene mapping in theH-2D region ofH-2 b . High immunogenicity of the H-3.1 alloantigen is determined by genes mapping in both theH-2K andH-2D regions ofH-2 b . Therefore, genes mapping in theH-2K andH-2D regions serve a function in presenting antigen to cytotoxic effector T cells. This function is analogous to that played byI-regionIr genes expressed in macrophages which present antigen to proliferating T cells. We present arguments for classification of theseH-2K/D genes as a second system ofIr genes and discuss the implications of twoH-2-linkedIr-gene systems, their possible functions, and their evolution.  相似文献   

10.
A.BY, B10.LPa, and B10.129(5M) mice were presensitized in vivo against B10.A(5R) cells and then restimulated in vitro by the same cells in the standard CML assay. The effector cells thus generated lysed not only B10.A(5R), but also C57BL/6 targets, indicating that, in addition to anti-H-2Dd response [measured on the B10.A(5R) targets], response to minor histocompatibility (H) antigens (measured on the C57BL/6 targets) also occurred. The latter response was directed against multiple minor H antigens in the case of the A.BY effectors, and against H-1 and H-3 antigens in the case of B10.129(5M) and B10.LPa effectors, respectively. The sensitization against minor H antigens occurred in the context of H-2Kb H-2Dd antigens, but by testing the response on C57BL/6 targets, only cells reacting with minor H antigens in the context of H-2Kb were assayed. The same effector cells were then tested against H-2b mutant strains, in which theH-2K b allele was replaced by a mutant one. All three effector types [A.BY, B10.LPa, and B10.129(5M)] behaved in a similar way: they all reacted with theH-2 bg1 mutant to the same degree as withH-2 b, they did not react at all or reacted only weakly with theH-2 bd andH-2 bh mutants, and they reacted moderately or strongly with theH-2 ba mutant. The degree of crossreactivity with the mutants reflects, with one exception, the degree of relatedness of these mutants toH-2 b, as established by other methods. The one exception is theH-2 ba mutant, which is the most unrelated toH-2 b, and yet it crossreacted strongly. Further testing, however, suggested that in this instance the crossreactivity was probably directed against H-2 antigens: the anti-H-2Dd effectors apparently crossreacted with the H-2Kba antigens. This finding is an example of cell-mediated crossreactivity between the products of two differentH-2 genes (H-2K andH-2D). It is also an example of anH-2 mutation generating an antigenic determinant known to be present in another strain.  相似文献   

11.
Cell-mediated lympholysis (CML) reactions were studied among four strains of C57BL/6 (B6) mice carrying mutant alleles (H-2 ba ,H-2 bd ,H-2 bg , andH-2 bh ) at thez1 locus in theK end ofH-2 b and the original B6 (H-2 b ) strain. Cross killing of target cells from lines that had not participated in the mixed lymphocyte reaction (MLR) was extensive, but usually less intense than that of target cells of stimulator cell genotype. The extent of CML crossreactivity could be limited by using cells from F1 hybrid mice as responders in MLR. In a comprehensive analysis of the cytotoxicity exerted by 20 MLR combinations with homozygous, and 10 MLR combinations with F1 hybrid responder cells, 19 different CML cytotoxicity patterns were identified, corresponding to at least 19 different CML target specificites. When the number of CML mismatches of each mutant with the originalH-2 b was calculated,H-2 ba was found to be most distinct fromH-2 b ,H-2 bs andH-2 bd were closest toH-2 b , andH-2 bh occupied an intermediate position. The validity of this sequence of relatedness is supported by published reports on skin graft survival times and on the interaction of T lymphocytes with virus-infected target cells using cells fromz1 locus mutants.  相似文献   

12.
Do histocompatibility antigens recognize themselves?   总被引:1,自引:1,他引:0  
In the Simonsen spleen weight assay, theH-2K ba mutant does not respond against theH-2K bd mutant orH-2K bd /H-2K b hybrid, while the parentalH-2K b haplotype does respond. TheH-2K ba /H-2K b hybrid reacts strongly to bothH-2K bd andH-2K bd /H-2K b , indicating that the donor genotype could influence the reactivity against the same antigenic difference. The response of theH-2 ba mutant against a number of unrelated H-2 antigens does not differ from that of the parental haplotype. TheH-2K bd mutant reacts againstH-2K b andH-2K ba , and theH-2K b parent reacts against both theH-2K ba andH-2K bd mutants. The specific defect of reactivity in theH-2K ba mutant is effectively complemented by crossing with a number of unrelatedH-2 haplotypes. TheH-2 ka andH-2 fa mutants complement poorly compared to corresponding parental strains CBA and A.CA, while the B10.M (H-2 f ) strain does not complement at all (which is probably attributable to an undetectedH-2 mutation in the last strain). The data strongly suggest that the product of theH-2K locus-which is known to function as a transplantation antigen, lymphocyte activating determinant, and serologically defined antigen-also influences the immune response capacity against a mutant histocompatibility determinant.  相似文献   

13.
The strength of the H-Y antigen on thymus cells and on skin was compared in differentH-2-congenic mouse strains using a host-versus-graft reaction popliteal lymph node assay, and skin grafts from males of parental strains grafted to F1 hybrid females. The results revealed considerable differences in the strength of the H-Y antigen among different congenic strains; these differences demonstrate the effect of theH-2-linked gene on the expression of the H-Y antigen. The linkage withH-2 was also confirmed in tests with segregating F2 generations. In the strains bearing recombinantH-2 haplotypes, the strength of the H-Y antigen is similar to that of parental strain from which the recombinant received itsK end, and the responsible gene (or genes) map to the left ofI-C. The effect of theH-2-linked gene(s) on thymus cells and skin is different. The gene linked to theK end ofH- 2b determines a strong H-Y antigen on thymus cells, but a relatively weak H-Y antigen on skin. The gene linked to theK end ofH- 2k determines a weak H-Y antigen on thymus cells, but a strong H-Y antigen on skin. The gene linked to theK end ofH- 2d determines a weak H-Y antigen on both thymus cells and skin. Our observations raise the possibility that the structural gene for the H-Y antigen is linked toH-2. Alternative (but not exclusive) explanations invoke regulatory effects ofH-2 on the expression of the H-Y antigen, possibly by means of the control of the cellular andogen receptors.  相似文献   

14.
Rejection of tailskin grafts exchanged between two male hybrids of the cross B10.M × B10.RIII(71NS) revealed a mutation in theH-2 f haplotype from the B10.M congenic line. Complementation studies with skin grafting and cell-mediated lympholysis showed the mutant, namedH-2 fb , to be different from anotherH-2 f mutant,H-2 fa , and further, that the HH-2 fb mutation occurred in theD end of theH-2 complex. Reciprocal skin grafts exchanged between mutant and normal mice were rejected. Hemagglutinating antibody reactive with B10.M cells was raised in the mutant mice. Mutant spleen cells responded weakly, but significantly, to wild-type cells in a mixed lymphocyte culture and in a graftversus-host assay, but no response was seen in the opposite direction. However, cytotoxic effector cells were generated against target cells in both directions in a cell-mediated lympholysis assay.  相似文献   

15.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

16.
Hybrids between an H-2+, TL+ lymphoma and an H-2+, TL lymphoma were studied for their expression of H-2 and TL antigens. The H-2 antigens of both parents were expressed, the TL specificity of the TL+ parent was retained, and the TL specificity characteristic of the mouse strain from which the TL lymphoma was derived was not expressed. There was no evidence that the genome of either parent altered the expression of the TL antigens coded for by the genome of the opposite parent. Hybrids between the H-2+, TL lymphoma and an H-2, TL variant line derived from the H-2+, TL+ cell line expressed both theK- andD-regioncoded H-2 antigens and the TL specificity characteristic of the parental cell line from which the variant cell was derived. This result is consistent with the defect in the variant cell's being the result of a mutation affecting a gene coding for a positive element necessary for expression of both TL and the serologically detectable H-2 antigens on the cell surface.  相似文献   

17.
Spleen cells carrying theH-2K b allele and sensitized against TNP-modified stimulator cells in vitro displayed a cytotoxic effect against TNP-modified target cells carrying a mutation in theH-2K b allele (haplotypesH-2 ba ,H-2 bd , andH-2 bf ). Similar crossreactivity in TNP-CML was observed in the reciprocal direction. Spleen cells carrying theH-2K k allele and sensitized against TNP-modified stimulators displayed a cytotoxic effect against TNP-modified target cells carrying a mutation in theH-2K k allele (haplotypeH-2 ka ) and vice versa. The effector cells in these assays were sensitive to anti-T cell serum in the presence of complement, and supernatants from immune cultures did not induce nonimmune cells to display a cytotoxic effect. Titration of effector cells from mutant and wild-type strains of theH-2 b haplotype indicated no detectable quantitative differences in their activities. These data demonstrate that crossreactivity in TNP-CML occurs in closely related allogeneic strains that have recently undergone mutation in theH-2 complex.  相似文献   

18.
C57BL/6 (H-2 b ) mice and two mutants derived from this strain, B6.C-H-2 ba (Hz1) andE6-H-2 bd (M505), were studied in a number of functional tests, in vitro and in vivo, that assay for differences at theH-2 complex. All three strains give rise to reciprocal mixed lymphocyte reactivity (MLR) and cell-mediated lympholysis (CML) in vitro as well as graft-host reactivity (GVHR) and skin graft rejection in vivo. Analysis for cross-reactivity between these strains in CML revealed that the gained antigens in each mutant do not cross-react, and that Hz1 has lost an antigen shared by C57BL/6 and M505 strains. In addition, spleen cells from B10.A(4R) mice, which differ from theH-2 b haplotype only at theK end of theH-2 complex, recognize a common antigen shared by all three strains tested. Provided that the mutations occurred in theH-2K b gene, these data indicate that a) there are at least three antigenic specificities coded for by theH-2K b gene(s) that serve as targets for receptors on thymus-derived (T) cells in CML; b) since C57BL/6 strain mice and the mutants are serologically indistinguishable on a qualitative basis, the antigens recognized by the receptors on T cells and by humoral H-2 antibody are nonidentical; and c) mutation in theH-2K b locus itself can give rise to allogeneic recognition phenomena such as MLR and GVHR.  相似文献   

19.
Erythrocytes and thymocytes of theH-2 d genotype express between 1.6 and 2.6 times as much glyoxalase I activity per milligram of protein as those of theH-2 b genotype; the activity in theF 1 (H-2b/H-2d) cells is intermediate between these two values. Activity of glyoxalase II is not affected by the H-2 genotype. The H-2d:H-2b ratio of glyoxalase I activity is higher in the BALB background where it is 2.6:1 than in the B10 background where it is 1.6:1. Thermal denaturation kinetics of enzymes from the H-2b and H-2d genotype cells are the same.  相似文献   

20.
In the present work, we used the differential redistribution method to study the molecular expression of several H-2 specificities controlled by theD region of theH-2 a haplotype. We observed that: capping of the private specificity H-2.4 induced capping of the public specificities H-2.3, H-2.35, and H-2.36, and vice versa; capping of any one of these specificities did not induce capping of the public specificity H-2.28, controlled by the same region. By contrast, capping of the H-2.28 specificity induced capping of these specificities; redistribution of H-2K and H-2D private specificities or redistribution of H-2D private specificity and Ia specificities did not induce capping of the H-2.28 specificity. These data indicate that a part of a molecule carrying the H-2.28 specificity is linked to a molecule carrying H-2.4, H-2.3, H-2.35, and H-2.36 specificities and that a part of a polypeptide chain bearing the H-2.28 specificity is independent from that bearing other specificities controlled either by theD region (i.e., H-2.4, H-2.3, H-2.35, and H-2.36) or by theK andI regions. These results further strengthened the hypothesis of the existence of at least two genes controlling theD-region H-2 antigenic specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号