首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antidromic responses of parasympathetic preganglionic neurons (PPN) in the sacral spinal cord evoked by stimulation of the pelvic nerve were studied in acute experiments on anaesthetized and immobilized cats by means of extracellular recording technique. The conduction velocities for preganglionic axons were calculated from the latency of these responses. It was shown that the upper limits of the conduction velocities for sacral parasympathetic axons extended the range (limit 12–15 m/sec) previously described: The velocities varied from 0.9 to 30.5 (mean 11.3±0.47) m/sec. According to the axonal conduction velocities the PPN were divided into four groups: the first group with conduction velocities from 0.9 to 3.0 m/sec; the second — 4.0–12; the third — 13–21; and the fourth group — 21–30 msec. PPN of the second group quantitatively prevailed — 57.6%, those of the third group represented 29.9%, and those of the first and fourth groups 6.8 and 6.2% of the total amount of PPN, respectively. Relative topic specialization of the second and third PPN groups was revealed. The density of PPN distribution in the intermediolateral region was higher in the second group than in the third one, while in ventral parts of the ventral horn concentration of the third PPN group was higher than that of other groups. The functional significance of PPN from the third group with fast-conducting axons (the conduction velocities correspond to those of group B fibers) is discussed.Translated from Neirofiziologiya, Vol. 25, No. 1, pp. 39–45, January–February, 1993.  相似文献   

2.
789 patients with diabetes mellitus were studied by clinical and electroneurographical investigation. Motor and sensory conduction velocities of the median nerve and motor conduction velocity of the tibial nerve were determined. 86.1% of the patients suffered from juvenile diabetes, and 13.9% from maturity onset diabetes. Average duration of the disease was 9.5 years, average age of the patients was 26.7 years. Clinical signs of polyneuropathy were found in 19.1%. In 40.9% of the patients at least one of 3 conduction velocities was found to be delayed. Patients with clinical signs of polyneuropathy exhibited delayed nerve conduction velocities and delayed distal latencies. Diagnosis of polyneuropathy almost with certainty is possible by determining the three nerve conduction velocities and the three corresponding distal latencies. 22% of patients without clinical signs of polyneuropathy exhibited electroneurographical signs of impaired peripheral nerve function. Heredity, body weight, lipid metabolism, actual metabolic balance, and treatment were found to be without any significant influence on nerve conduction velocity.  相似文献   

3.
Nerve conduction velocities were determined in patients with diabetes mellitus: motor conduction of the median nerve in 778 patients, sensory conduction of the median nerve in 680 patients and motor conduction of the tibial nerve in 745 patients. In 40.9% out of 778 patients at least one of the three nerve conduction velocities were found within pathological ranges. 30.4% of 227 patients below 19 years of age in whom the duration of the disease did not exceed four years exhibited at least one delayed nerve conduction velocity. Clinical signs of polyneuropathy in children and in adolescents below 19 years of age are rare (0.6%). In contrast delayed nerve conduction velocities were found in 29.4%. Metabolic disturbance of peripheral nerve function is assumed to be responsible in these patients, for angiopathy in children and adolescents is very rare too.  相似文献   

4.
During a study of peripheral nerve function in chronic renal failure, 11 patients who were being treated by chronic intermittent haemodialysis developed serum hepatitis. Before the infection there was a trend towards improvement in nerve conduction velocities. A pronounced deterioration in the conduction velocities in motor fibres of peripheral nerves occurred in association with hepatitis. In the months after recovery from the infection there was again a trend towards improvement in conduction velocities. We suggest that this reflects the occurrence of a peripheral neuropathy which is at least in part demyelinating. The neuropathy is related to the serum hepatitis, but its pathogenesis is indeterminate.  相似文献   

5.
Temporal characteristics of monosynaptic EPSPs evoked by stimulation of the cortex and internal capsule were investigated in 112 reticulospinal neurons of the gigantocellular nucleus of the medulla with different conduction velocities. Negative correlation was found between the latent period and duration of the EPSPs and the conduction velocity along the corticobulbar fibers. Positive correlation was found between the same temporal characteristics of the EPSPs and conduction velocity along axons of the reticulospinal neurons. Reticulospinal neurons with conduction velocities of between 10.8 and 65.0 m/sec were found to be activated by fast- and slowly-conducting cortico-bulbar fibers, whereas reticulospinal neurons with conduction velocities of between 65.0 and 155 m/sec were activated only by slowly conducting corticobulbar fibers. The functional significance of this differentiation of the cortico-reticulospinal connection is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 366–372, July–August, 1976.  相似文献   

6.
Mycotoxin fumonisin B1 (FB1) a natural inhibitor of ceramide synthase contaminating mainly the corn-based food and feed may cause dysfunctions in the nervous system. In the present study peripheral neural dysfunctions were biomonitored after dietary FB1 exposure in rats. Daily oral doses of 6.2 mg/kg body weight/day FB1 were applied in rats for 2 weeks. Before and after FB1 treatment nerve conduction velocities of tibial and sciatic nerves and spinal reflexes were analyzed in vivo. Electrophysiological recordings of biphasic plantar EMG (M and H components) and evaluation of sensory and motor nerve conduction velocities were carried out. Nerve conduction velocities revealed decreasing tendencies after FB1 exposure. The flexor reflex and the H-components of the extensor reflex were significantly reduced. The proposed in vivo biomonitoring can reveal functional impairment of the peripheral nervous system caused by mycotoxin exposure. Reduction of conduction velocity and altered reflexes after FB1 exposure are suspected to be associated with modified signal transmission due to toxic systemic effects and possible changes in sphingolipid metabolism.  相似文献   

7.
Natural electrical activity in the left greater splanchnic nerve during feeding was studied in chronic experiments on dogs. The method of separation of coherent components in pulsed form was used to analyze the discharges: Recording from the nerve was carried out at two points; activity was delayed by the time for its conduction along the nerve between the channels, in the channel which received it first, and it was then led from both channels to the coincidence unit. Spontaneous afferent impulsation was shown to spread among a group of nerve fibers with conduction velocities of between 3.7 and 20 m/sec, and with a mean velocity for the maximum of activity of 9.2±1.0 m/sec. Efferent spontaneous activity was not detected. During feeding with meat, besides spontaneous activity, activity of a group of afferent fibers with conduction velocities within the range 3.7–9.2 m/sec also was found (the mean velocity for the maximum of activity was 5.8±0.7 m/sec), and also activity of a group of efferent fibers with conduction velocities within the range 2.5–9.8 m/sec (mean value for maximum 3.5±0.5 m/sec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 636–642, November–December, 1981.  相似文献   

8.
Sensory impulses elicited by electrical, mechanical and chemicalstimulation of the fungiform papillae in the bullfrog tonguewere recorded at two distant points on the glossopharyngealnerve, and the conduction velocities of different types of sensoryunits in the medial branch supplying the caudal two-thirds ofthe tongue were compared with those in the lateral branch innervatingthe rostral third. (1) Rapidly-and slowly-adapting mechanosensitiveunits in the medial branch had the mean conduction velocityof 23 ± 0.4 (S.E.) and 14.8 ± 0.3 m/sec, respectively,the former but not the latter being significantly (P <0.001)slower than the lateral branch units of the same type by 6m/sec.(2) The velocity of gustatory unit impulses was found to rangefrom 14 to 20 m/sec. Statistical examination revealed that themean conduction velocities of the medial branch units can bearranged in the order of water- > sucrose- > acetic acid-= NaCl- >quinine-sensitive units. Similar order had beenfound in the lateral branch units, which were significantly(P <0.001) faster in the mean conduction velocity than themedial branch units of the respective type by 2 m/sec.  相似文献   

9.
The contraction and electrical conduction velocity of the longitudinal and circular muscle of the oviduct from rabbits in estrus, 24 or 72 h following administration of human chorionic gonadotropin (hCG) or 14 days following castration have been compared. Two populations of conduction and contraction velocities were identified, with the faster velocity being associated with the longitudinal muscle. There was a large overlap between longitudinal and circular contraction, suggesting complex relationships between longitudinal and circular muscle. From the results it appears that during ovum transport the circular velocities increased, with the slowest rates at estrus. The values obtained 72 h following hCG injection most closely resembled those in the castrate group of animals. In the longitudinal orientation, however, the velocities were greater 24 h following hCG injection than at estrus or 72 h following hCG injection, suggesting a complex relationship between both longitudinal and circular muscle of the oviduct following ovulation.  相似文献   

10.
A technique was developed to locate the site of slow-wave origin (pacemaker) in a sheet of smooth muscle tissue. Evoked slow waves were used to measure conduction velocities in the two dimensions of sheets of smooth muscle. These conduction velocities were used to "triangulate" to the pacemaker site by an iterative minimization process. The model was tested by triangulating to events evoked from known regions within sheets of canine gastric muscle. The technique was used to determine the sites of origin of spontaneous slow waves and the shift in the spontaneous pacemaker caused by localized injury. This technique will be useful in locating pacemaker regions and to study the factors that affect the origin and frequency of slow waves in syncytial tissues. The triangulation technique should be applicable to intact organs as well as isolated sheets of muscle.  相似文献   

11.
Motor and/or sensory conduction velocities are used to assess peripheral nervous system disorders. Although the miniature pig represents a model of choice for long-term pharmacological experimentation, no study has so far been reported on this model in relation to the measurement of nerve conduction velocities. We developed the present technique and applied it to 34 3-18-month-old Yucatan minipigs. Motor and sensory conduction velocities were measured using the anterior tibial nerve and the internal plantar nerve, a branch of the posterior tibial nerve, respectively. The nerve conduction velocity data of motor (MNCV) and sensory (SNCV) nerves, together with the amplitude of the sensory nerve signal, were logarithmically dependent on the age of the tested animals (r(2)=0.92, 0.81 and 0.76, respectively). The mean values of MNCV and SNCV were 70.9 +/- 1.1 and 67.9 +/- 0.2 m/s, respectively, at the age of 16 months for these miniature pigs. In order to validate this model, we compared it with other known models when the velocities reached a plateau at the end of the study. These values were found to be higher than those in humans or rats, but are comparable to those of the baboon, one of the best large animal models for human pathologies. Because the physiology and metabolism of the minipig resemble those of humans, and due to its long lifetime, this animal represents a good model for studying the development of neuropathology.  相似文献   

12.
Larger axons usually have faster conduction velocities, lower thresholds, and larger extracellular action potentials than smaller axons. However, it has been shown that the largest fiber, R2, in the right pleurovisceral connective of the marine mollusc, Aplysia, has a higher threshold and a slower conduction velocity than does the smaller axon of cell RI, even though the amplitude of R2's spike is larger than R1's spike. One explanation of this apparent parodox is that the two axons have different "intrinsic membrane and axoplasmic constants" (Goldman, L. (1961), J. Cell Comp. Physiol. 57: 185-191). However, the deep infolding of R2's axonal membrane suggested that differences in the shape of the two axons might also account for the paradox. Accordingly, we measured the conduction velocities of the two axons and then examined the same axons in the electron microscope in order to measure their volumes and surface areas. Our morphological observations indicate that the extensive infolding of surface membrane causes R2 to have a smaller volume to surface area ratio than R1. Thus, since conduction velocity is proportional to the square root of the volume to surface area ratio (Hodgkin, A.L. (1954), J. Physiol. 125: 221-224), it is predictable that the smaller axon would have a faster conduction velocity. The results suggest that the paradoxical conduction velocities can be explained largely as resulting from differences in the shapes of the two axons. However, certain discrepancies between the measured and the predicted values suggest that other factors are contributing as well.  相似文献   

13.
Functional characteristics of single reticulo-spinal fibers of the ventral funiculi were studied at the level of the 10th thoracic segment of the spinal cord in anesthetized (with chloralose and pentobarbital) and decerebrate cats after removal of the cerebellum. The reticulospinal tract of the ventral funiculus consists of a broad spectrum of rhythmically active and "silent" fibers, divided into three groups: fibers with a high (65–110 m/sec), medium (45–60 m/sec), and low (20–40 m/sec) conduction velocity. Spontaneous rhythmic activity is more characteristic of the fibers of the last two groups. The quantitative ratio between rhythmically active and silent fibers was about twice as high in the decerebrate as in the anesthetized animals. Depending on the character of distribution of interspike intervals the spontaneous activity of the reticulo-spinal fibers of the animals of both groups could be classified in three types: I) with a uniform distribution of interval; II) with a tendency toward grouping of spikes into volleys; III) with marked grouping of the intervals. Fibers with low and medium conduction velocities more often had spontaneous activity of types I and II, while fibers with a high conduction velocity more often had activity of types II and III. The possible functional significance of the reticulo-spinal fibers of the ventral funiculi with different conduction velocities and types of spontaneous activity is discussed.  相似文献   

14.
We measured the conduction velocity of the intracranial portion of the auditory nerve in 3 patients undergoing vestibular nerve section to treat Ménière's disease. The conduction velocity varied from patient to patient, with an average value of 15.1 m/sec. The latency of peak III of the brain-stem auditory evoked potentials (BAEPs) increased by an average of 0.5 msec as a result of exposure of the eighth nerve, and if that increase is assumed to affect the entire length of the auditory nerve (2.6 cm) evenly, then the corrected estimate of conduction velocity would be 22.0 m/sec. Estimates of conduction velocity based on the interpeak latencies of peaks I and II of the BAEP, assuming that peak II is generated by the mid-portion of the intracranial segment of the auditory nerve, yielded similar values of conduction velocities (about 20 m/sec).  相似文献   

15.
The presence in the left aortic nerve of rabbits of medullated and nonmedullated fibres with conduction velocities of 12--30 m/s and 0.9--1.2 m/s, respectively, was demonstrated. In experiments on the isolated aortic arch preparation the electrophysiological characteristics of the aortic baroceptors with the medullated and non-medullated fibres were studied by means of a selective block of conduction in these fibers. Baroceptors with the non-medullated fibers had a higher threshold pressure and a wider functional range.  相似文献   

16.
Slow Conduction in Cardiac Muscle: A Biophysical Model   总被引:1,自引:0,他引:1       下载免费PDF全文
Mechanisms of slow conduction in cardiac muscle are categorized and the most likely identified. Propagating action potentials were obtained experimentally from a synthetically grown strand of cardiac muscle (around 50 μm by 30 mm) and theoretically from a one-dimensional cable model that incorporated varying axial resistance and membrane properties along its length. Action potentials propagated at about 0.3 m/s, but in some synthetic strands there were regions (approximately 100 μm in length) where the velocity decreased to 0.002 m/s. The electrophysiological behavior associated with this slow conduction was similar to that associated with slow conduction in naturally occurring cardiac muscle (notches, Wenckebach phenomena, and block). Theoretically, reasonable changes in specific membrane capacitance, membrane activity, and various changes in geometry were insufficient to account for the observed slow conduction velocities. Conduction velocities as low as 0.009 m/s, however, could be obtained by increasing the resistance (ri) of connections between the cells in the cable; velocities as low as 0.0005 m/s could be obtained by a further increase in ri made possible by a reduction in membrane activity by one-fourth, which in itself decreased conduction velocity by only a factor of 1/1.4. As a result of these findings, several of the mechanisms that have been postulated, previously, are shown to be incapable of accounting for delays such as those which occur in the synthetic strand as well as in the atrioventricular (VA) node.  相似文献   

17.
The transient enlargement of the compound muscle action potential (M wave) after a conditioning contraction is referred to as potentiation. It has been recently shown that the potentiation of the first and second phases of a monopolar M wave differed drastically; namely, the first phase remained largely unchanged, whereas the second phase underwent a marked enlargement and shortening. This dissimilar potentiation of the first and second phases has been suggested to be attributed to a transient increase in conduction velocity after the contraction. Here, we present a series of simulations to test if changes in the timing variability between motor unit potentials (MUPs) can be responsible for the unequal potentiation (and shortening) of the first and the second M-wave phases. We found that an increase in the mean motor unit conduction velocity resulted in a marked enlargement and narrowing of both the first and second M-wave phases. The enlargement of the first phase caused by a global increase in motor unit conduction velocities was apparent even for the electrode located over the innervation zone and became more pronounced with increasing distance to the innervation zone, whereas the potentiation of the second phase was largely independent of electrode position. Our simulations indicate that it is unlikely that an increase in motor unit conduction velocities (accompanied or not by changes in their distribution) could account for the experimental observation that only the second phase of a monopolar M wave, but not the first, is enlarged after a brief contraction. However, the combination of an increase in the motor unit conduction velocities and a spreading of the motor unit activation times could potentially explain the asymmetric potentiation of the M-wave phases.  相似文献   

18.
In anesthetized in vivo preparations, responses of two types of extraocular muscle fibers have been studied. The small, multiply innervated slow fibers have been shown to be capable of producing propagated impulses, and thus have been labeled slow multi-innervated twitch fibers. Fast and slow multi-innervated twitch fibers are distinguished by impulse conduction velocities, by ranges of membrane potentials, by amplitudes and frequencies of the miniature end plate potentials, by responses to the intravenous administration of succinylcholine, by the frequency of stimulation required for fused tetanus, and by the velocities of conduction of the nerve fibers innervating each of the muscle fiber types.  相似文献   

19.
Remyelination in the chicken sciatic nerve occurring after the injection of diphtheria toxin was studied. The rates of fast axonal transport and conduction velocities were measured sixty days after the injection of the toxin. Fast axonal transport rates were found to have returned to normal in the remyelinated nerves, but conduction velocity was markedly reduced even though the birds appeared to walk normally. The remyelinated nerve fibres had on histological examination relatively thin myelin sheaths. Of greater interest was the number of Schmidt-Lanterman clefts observed in both the control and remyelinated nerves when viewed in the electron microscope.  相似文献   

20.
Larger axons usually have faster conduction velocities, lower thresholds, and larger extracellular action potentials than smaller axons. However, it has been shown that the largest fiber, R2, in the right pleurovisceral connective of the marine mollusc, Aplysia, has a higher threshold and a slower conduction velocity than does the smaller axon of cell R1, even though the amplitude of R2's spike is larger than R1's spike. One explanation of this apparent paradox is that the two axons have different “intrinsic membrane and axoplasmic constants” (Goldman, L. (1961), J. Cell Comp. Physiol. 57: 185–191). However, the deep infolding of R2's axonal membrane suggested that differences in the shape of the two axons might also account for the paradox. Accordingly, we measured the conduction velocities of the two axons and then examined the same axons in the electron microscope in order to measure their volumes and surface areas. Our morphological observations indicate that the extensive infolding of surface membrane causes R2 to have a smaller volume to surface area ratio than R1. Thus, since conduction velocity is proportional to the square root of the volume to surface area ratio (Hodgkin, A. L. (1954), J. Physiol. 125: 221–224), it is predictable that the smaller axon would have a faster conduction velocity. The results suggest that the paradoxical conduction velocities can be explained largely as resulting from differences in the shapes of the two axons. However, certain discrepancies between the measured and the predicted values suggest that other factors are contributing as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号