首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of purified C57BL/6 murine CD4(+) T lymphocytes with anti-CD3 mAb serves as a model of TCR-mediated activation and results in increased IFN-gamma production and cell surface expression of CD25 and CD69. We demonstrate here that signaling through the TCR causes a rapid (4-h) 5-fold increase in A(2A) adenosine receptor (AR) mRNA, which is correlated with a significant increase in the efficacy of A(2A)AR-mediated cAMP accumulation in these cells. A(2A)AR activation reduces TCR-mediated production of IFN-gamma by 98% with a potency order of 4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl]prop-2-ynyl}cyclohexanecarboxylic acid methyl ester (ATL146e; EC(50) = 0.19 +/- 0.03 nM) > 4-{3-[6-amino-9-(5-cyclopropyl-carbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl]prop-2-ynyl}piperidine-1-carboxylic acid methyl ester (ATL313; 0.43 +/- 0.06 nM) > 5'-N-ethylcarboxamidoadenosine (3.5 +/- 0.77 nM) > 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680; 7.2 +/- 1.4 nM) > N(6)-cyclohexyladenosine (110 +/- 33 nM) > 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarboxamide (390 +/- 160 nM), similar to the potency order to compete for radioligand binding to the recombinant murine A(2A)AR but not the A(3)AR. The selective A(2A)AR antagonist, 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385), inhibits the effect of ATL146e with a pA(2) of 0.34 nM and also inhibits the effects of N(6)-cyclohexyl-adenosine and 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarboxamide. In CD4(+) T cells derived from A(2A)AR(-/-) and A(2A)AR(+/-) mice, the IFN-gamma release response to ATL146e is reduced by 100 and 50%, respectively, indicative of a gene dose effect. The response of T cells to the phosphodiesterase inhibitor, 4-(3'-cyclopentyloxy-4'-methoxyphenyl)-2-pyrrolidone (rolipram), is not affected by A(2A)AR deletion. We conclude that the rapid induction of the A(2A)AR mRNA in T cells provides a mechanism for limiting T cell activation and secondary macrophage activation in inflamed tissues.  相似文献   

2.
Host defenses against infection are profoundly compromised in HIV-infected hosts due to progressive depletion of CD4+ T lymphocytes and defective cell-mediated immunity. Although recent advances in antiretroviral therapy can dramatically lower HIV viral load, blood CD4+ T lymphocytes are not restored to normal levels. Therefore, we investigated mechanisms of host defense other than those involving CD4+ T lymphocytes against a common HIV-related opportunistic infection, Pneumocystis carinii (PC) pneumonia. Using CD4-depleted mice, which are permissive for chronic PC infection, we show that up-regulation of murine IFN-gamma by gene transfer into the lung tissue results in clearance of PC from the lungs in the absence of CD4+ lymphocytes. This resolution of infection was associated with a >4-fold increase in recruited CD8+ T lymphocytes and NK cells into the lungs. The role of CD8+ T cells as effector cells in this model was further confirmed by a lack of an effect of IFN-gamma gene transfer in scid mice or mice depleted of both CD4+ and CD8+ T cells. Cytokine mRNA analysis revealed that recruited, lung-derived CD8+ T cells had greater expression of IFN-gamma message in animals treated with the IFN-gamma gene. These results indicate that CD8+ T cells are capable of clearing PC pneumonia in the absence of CD4+ T cells and that this host defense function of CD8+ T cells, as well as their cytokine repertoire, can be up-regulated through cytokine gene transfer.  相似文献   

3.
The higher prevalence of autoimmune disease among women compared with men suggests that steroids impact immune regulation. To investigate how sex steroids modulate cellular immune function, we conducted a randomized trial in 12 healthy men aged 35-55 yr treated for 28 days with placebo, a GnRH antagonist, acyline to induce medical castration, or acyline plus daily testosterone (T) gel to replace serum T, followed by a 28-day recovery period. Serum hormones were measured weekly and peripheral blood lymphocytes (PBLs) were collected biweekly for analyses of thymus-derived lymphocyte (T cell) subtypes and natural killer (NK) cells. Compared with the other groups and to baseline throughout the drug exposure period, men receiving acyline alone had significant reductions in serum T (near or below castrate levels), dihydrotestosterone, and estradiol (P < 0.05). Medical castration significantly reduced the percentage of CD4+ CD25+ T cells (P < 0.05), decreased mitogen-induced CD8+ T cell IFN-gamma expression, and increased the percentage of NK cells without affecting the ratio of CD4+ to CD8+ T cells and the expression of NK cell-activating receptor NKG2D or homing receptor CXCR1. No changes in immune composition were observed in subjects receiving placebo or acyline with replacement T. These data suggest that T and/or its metabolites may help maintain the physiological balance of autoimmunity and protective immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells. In addition, sex steroids suppress NK cell proliferation. This study supports a complex physiological role for T and/or its metabolites in immune regulation.  相似文献   

4.
5.
Immunization with serological identification of Ags by recombinant expression cloning (SEREX)-defined self-Ags leads to generation/activation of CD4+ CD25+ regulatory T cells with suppressive activities and enhanced expression of Foxp3. This is associated with increased susceptibility to pulmonary metastasis following challenge with syngeneic tumor cells and enhanced development of 3-methylcholanthrene-induced primary tumors. In contrast, coimmunization with the same SEREX-defined self-Ags mixed with a CTL epitope results in augmented CTL activity and heightened resistance to pulmonary metastasis, both of which depend on CD4+ Th cells. These active regulatory T cells and Th cells were derived from two distinct CD4+ T cell subsets, CD4+ CD25+ T cells and CD4+ CD25- T cells, respectively. In the present study, IFN-gamma was found to abrogate the generation/activation of CD4+ CD25+ regulatory T cells by immunization with SEREX-defined self-Ag. CD4+ CD25+ T cells from these IFN-gamma-treated mice failed to exhibit immunosuppressive activity as measured by 1) increased number of pulmonary metastasis, 2) enhanced development of 3-methylcholanthrene-induced primary tumors, 3) suppression of peptide-specific T cell proliferation, and 4) enhanced expression of Foxp3. The important role of IFN-gamma produced by CD8+ T cells was shown in experiments demonstrating that CD4+ CD25+ T cells cotransferred with CD8+ T cells from IFN-gamma(-/-) mice, but not from wild-type BALB/c mice, became immunosuppressive and enhanced pulmonary metastasis when recipient animals were subsequently immunized with a SEREX-defined self-Ag and a CTL epitope. These findings support the idea that IFN-gamma regulates the generation/activation of CD4+ CD25+ regulatory T cells.  相似文献   

6.
Whether IFN-gamma contributes to the per-cell protective capacity of memory CD8(+) T cells against Listeria monocytogenes (LM) has not been formally tested. In this study, we generated LM Ag-specific memory CD8(+) T cells via immunization of wild-type (WT) and IFN-gamma-deficient (gamma knockout (GKO)) mice with LM peptide-coated dendritic cells and compared them phenotypically and functionally. Immunization of WT and GKO mice resulted in memory CD8(+) T cells that were similar in number, functional avidity, TCR repertoire use, and memory phenotype. The protective capacity of memory CD8(+) T cells from immunized WT and GKO mice was evaluated after adoptive transfer of equal numbers of WT or GKO cells into naive BALB/c mice followed by LM challenge. The adoptively transferred CD8(+) T cells from GKO donors exhibited a decreased ability to reduce bacterial numbers in the organs of recipient mice when compared with an equivalent number of Ag-matched WT CD8(+) T cells. This deficiency was most evident early (day 3) after infection if a relatively low infectious dose was used; however, transferring fewer memory CD8(+) T cells or increasing the LM challenge dose revealed a more pronounced defect in protective immunity mediated by the CD8(+) T cells from GKO mice. Our studies identified a decrease in Ag-specific target cell lysis in vivo by CD8(+) T cells from GKO mice as the mechanism for the decreased protective immunity after LM challenge. Further studies suggest that the lack of IFN-gamma production by the Ag-specific CD8 T cells themselves diminishes target cell sensitivity to cytolysis, thereby reducing the lytic potency of IFN-gamma-deficient LM-specific memory CD8(+) T cells.  相似文献   

7.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

8.
Cachexia is the dramatic weight loss and muscle atrophy seen in chronic disease states, including autoimmunity, cancer, and infection, and is often associated with lymphopenia. We have previously shown that CD4(+) T cells that express the lowest density of CD44 (CD4(+)CD44(v.low)) are significantly reduced in diabetic NOD mice that are cachexic compared with diabetic mice that are not cachexic. Using this model, and a model of cancer cachexia, we test the hypothesis that CD4(+)CD44(v.low) cells play an active role in protecting the host from cachexia. CD4(+)CD44(v.low) cells, but not CD4(+) cells depleted of CD44(v.low) cells, delay the onset of wasting when infused into either diabetic or prediabetic NOD recipients. However, no significant effect on the severity of diabetes was detected. In a model of cancer cachexia, they significantly reduce muscle atrophy, and inhibit muscle protein loss and DNA loss, even when given after the onset of cachexia. Protection from wasting and muscle atrophy by CD4(+)CD44(v.low) cells is associated with protection from lymphopenia. These data suggest, for the first time, a role for an immune cell subset in protection from cachexia, and further suggest that the mechanism of protection is independent of protection from autoimmunity.  相似文献   

9.
We recently identified CD8+CD122+ regulatory T cells that directly control CD8+ and CD4+ cells without intervention of APCs. In this study, we investigated the effector mechanism of CD8+CD122+ regulatory T cells by using an in vitro regulation system. The profile of cytokine expression revealed that IL-10 was predominantly produced by CD8+CD122+ cells, whereas other cytokines were similarly expressed in CD8+CD122+ cells and CD8+CD122- cells. Suppression of both proliferation and IFN-gamma production by CD8+CD122- cells by CD8+CD122+ cells was blocked by adding anti-IL-10 Ab to the culture but not by adding anti-TGF-beta Ab. When IL-10 was removed from the conditioned medium from CD8+CD122+ cells, the conditioned medium no longer showed regulatory activity. Finally, CD8+CD122+ cells from IL-10-deficient mice had no regulatory activity in vitro and reduced regulatory activity in vivo. Our results clearly indicate that IL-10 is produced by CD8+CD122+ cells and mediates the regulatory activity of these cells.  相似文献   

10.
Memory T cells (T(M)) are able to rapidly exert effector functions, including immediate effector cytokine production upon re-encounter with Ag, which is critical for protective immunity. Furthermore, this poised state is maintained as T(M) undergo homeostatic proliferation over time. We examined the molecular basis underlying this enhanced functional capacity in CD8 T(M) by comparing them to defective CD8 T(M) generated in the absence of CD4 T cells. Unhelped CD8 T(M) are defective in many functions, including the immediate expression of cytokines, such as IL-2 and IFN-gamma. Our data show that this defect in IL-2 and IFN-gamma production is independent of clonal selection, functional avidity maturation, and the integrity of proximal TCR signaling, but rather involves epigenetic modification of these cytokine genes. Activated Ag-specific CD8 T cells exhibit rapid DNA demethylation at the IL-2 and IFN-gamma loci and substantial histone acetylation at the IFN-gamma promoter and enhancer regions. These epigenetic modifications occur early after infection at the effector stage and are maintained through memory development. However, activated unhelped CD8 T cells, which fail to develop into functional memory and are incapable of rapid cytokine production, exhibit increased DNA methylation at the IL-2 promoter and fail to acetylate histones at the IFN-gamma locus. Thus, CD4 T cell help influences epigenetic modification during CD8 T(M) differentiation and these epigenetic changes provide a molecular basis for the enhanced responsiveness and the maintenance of a "ready-to-respond" state in CD8 T(M).  相似文献   

11.
CD4+CD25+ regulatory T cells control innate immune reactivity after injury   总被引:10,自引:0,他引:10  
Major injury initiates a systemic inflammatory response that can be detrimental to the host. We have recently reported that burn injury primes innate immune cells for a progressive increase in TLR4 and TLR2 agonist-induced proinflammatory cytokine production and that this inflammatory phenotype is exaggerated in adaptive immune system-deficient (Rag1(-/-)) mice. The present study uses a series of adoptive transfer experiments to determine which adaptive immune cell type(s) has the capacity to control innate inflammatory responses after injury. We first compared the relative changes in TLR4- and TLR2-induced TNF-alpha, IL-1beta, and IL-6 production by spleen cell populations prepared from wild-type (WT), Rag1(-/-), CD4(-/-), or CD8(-/-) mice 7 days after sham or burn injury. Our findings indicated that splenocytes prepared from burn-injured CD8(-/-) mice displayed TLR-induced cytokine production levels similar to those in WT mice. In contrast, spleen cells from burn-injured CD4(-/-) mice produced cytokines at significantly higher levels, equivalent to those in Rag1(-/-) mice. Moreover, reconstitution of Rag1(-/-) or CD4(-/-) mice with WT CD4(+) T cells reduced postinjury cytokine production to WT levels. Additional separation of CD4(+) T cells into CD4(+)CD25(+) and CD4(+)CD25(-) subpopulations before their adoptive transfer into Rag1(-/-) mice showed that CD4(+)CD25(+) T cells were capable of reducing TLR-stimulated cytokine production levels to WT levels, whereas CD4(+)CD25(-) T cells had no regulatory effect. These findings suggest a previously unsuspected role for CD4(+)CD25(+) T regulatory cells in controlling host inflammatory responses after injury.  相似文献   

12.
13.
We investigated whether oral tolerance could block the development of an inflammatory response mediated by CD8+ T cells, using a mouse model of oral tolerance of contact sensitivity (CS) to the hapten 2, 4-dinitrofluorobenzene (DNFB). In this system, the skin inflammatory response is initiated by hapten-specific class I-restricted cytotoxic CD8+ T (CTL) cells, independently of CD4 help. Oral delivery of DNFB before skin sensitization blocked the CS response by impairing the development of DNFB-specific CD8+ effector T cells in secondary lymphoid organs. This was shown by complete inhibition of DNFB-specific CTL and proliferative responses of CD8+ T cells, lack of specific IFN-gamma-producing CD8+ T cells, and inability of CD8+ T cells to transfer CS in RAG20/0 mice. RT-PCR and immunohistochemical analysis confirmed that recruitment of CD8+ effectors of CS in the skin at the site of hapten challenge was impaired in orally tolerized mice. Sequential anti-CD4 Ab treatment showed that only depletion of CD4+ T cells during the afferent phase of CS abrogated oral tolerance induction by restoring high numbers of specific CD8+ effectors in lymphoid organs, whereas CD4 depletion during the efferent phase of CS did not affect oral tolerance. These data demonstrate that a single intragastric administration of hapten can block in vivo induction of DNFB-specific CD8+ CTL responsible for tissue inflammation and that a subset of regulatory CD4+ T cells mediate oral tolerance by inhibiting expansion of specific CD8+ effectors in lymph nodes.  相似文献   

14.
Hepatic ischemia-reperfusion results in an acute inflammatory response culminating in the recruitment of activated neutrophils that directly injure hepatocytes. Recent evidence suggests that CD4+ lymphocytes may regulate this neutrophil-dependent injury, but the mechanisms by which this occurs remain to be elucidated. In the present study, we sought to determine the type of CD4+ lymphocytes recruited to the liver after ischemia-reperfusion and the manner in which these cells regulated neutrophil recruitment and tissue injury. Wild-type and CD4 knockout (CD4-/-) mice were subjected to hepatic ischemia-reperfusion. CD4+ lymphocytes were recruited in the liver within 1 h of reperfusion and remained for at least 4 h. These cells were comprised of conventional (alphabetaTCR-expressing), unconventional (gammadeltaTCR-expressing), and natural killer T cells. CD4-/- mice were then used to determine the functional role of CD4+ lymphocytes in hepatic ischemia-reperfusion injury. Compared with wild-type mice, CD4-/- mice had significantly greater liver injury, yet far less neutrophil accumulation. Adoptive transfer of CD4+ lymphocytes to CD4-/- mice recapitulated the wild-type response. In wild-type mice, neutralization of interleukin (IL)-17, a cytokine released by activated CD4+ lymphocytes, significantly reduced neutrophil recruitment in association with suppression of MIP-2 expression. Finally, oxidative burst activity of liver-recruited neutrophils was higher in CD4-/- mice compared with those from wild-type mice. These data suggest that CD4+ lymphocytes are rapidly recruited to the liver after ischemia-reperfusion and facilitate subsequent neutrophil recruitment via an IL-17-dependent mechanism. However, these cells also appear to attenuate neutrophil activation. Thus the data suggest that CD4+ lymphocytes have dual, opposing roles in the hepatic inflammatory response to ischemia-reperfusion.  相似文献   

15.
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.  相似文献   

16.
In the present study we evaluated the mechanisms behind the implication of the costimulatory molecule CD28 for the immune response against the intracellular protozoan parasite Trypanosma cruzi. Our results reveal a critical role for CD28 in the activation of both CD4+ and CD8+ T cells and induction of the effector mechanisms that ultimately mediate the control of parasite growth and pathogenesis in infected mice. CD28-deficient (CD28-/-) mice are highly susceptible to T. cruzi infection, presenting higher parasitemia and tissue parasitism, but less inflammatory cell infiltrate in the heart than C57Bl/6 wild-type (WT) mice. All the infected WT mice survived acute infection, whereas 100% of CD28-/- mice succumbed to it. The increased susceptibility of the CD28-/- mice was associated with a dramatic decrease in the production of IFN-gamma by both CD4+ and CD8+ T cells resulting in a diminished capacity to produce nitric oxide (NO) and mediate parasite killing. T cell activation was also profoundly impaired in CD28-/- mice, which presented decreased lymphoproliferative response after the infection compared to WT mice. Together, these data represent the first evidence that CD28 is critical for efficient CD4+ T cell activation in response to T. cruzi infection in mice.  相似文献   

17.
18.
During activation in vivo, naive CD4(+) T cells are exposed to various endogenous ligands, such as cytokines and the neurotransmitter norepinephrine (NE). To determine whether NE affects naive T cell differentiation, we used naive CD4(+) T cells sort-purified from either BALB/c or DO11.10 TCR-transgenic mouse spleens and activated these cells with either anti-CD3/anti-CD28 mAbs or APC and OVA(323-329) peptide, respectively, under Th1-promoting conditions. RT-PCR and functional assays using selective adrenergic receptor (AR) subtype antagonists showed that naive CD4(+) T cells expressed only the beta 2AR subtype to bind NE and that stimulation of this receptor generated Th1 cells that produced 2- to 4-fold more IFN-gamma. This increase was due to more IFN-gamma produced per cell upon restimulation instead of more IFN-gamma-secreting cells, as determined by IFN-gamma-specific immunofluorescence and enzyme-linked immunospot. In contrast, Th1 cell differentiation was unaffected when naive T cells were exposed to NE and activated either in the presence of a neutralizing anti-IL-12 mAb or by APC from IL-12-deficient mice. Moreover, the addition of IL-12 to the IL-12-deficient APC cultures restored the ability of NE to increase Th1 differentiation. Taken together, these results indicate that a possible link may exist between the signaling pathways used by NE and IL-12 to increase naive CD4(+) T cell differentiation to a Th1 cell.  相似文献   

19.
In the present study, we have investigated the ability of human T cells to secrete IL-2, IL-4, and IFN-gamma. IL-4 and IFN-gamma were quantified with enzymatic immunoassays and IL-2 with a biologic assay by using the murine IL-2-dependent cell line CTLL-2. PBL, stimulated with Con A or with a combination of the phorbol ester 13-O-tetradecanoylphorbol-12-acetate and the Ca2+ ionophore A23187 secreted IL-2, IL-4, and IFN-gamma. The kinetics of the secretion of the three lymphokines was investigated with two CD4+ clones; one (GEO-2) that produced IL-2, IL-4, and IFN-gamma and another (HY640), that produced only IL-2 and IFN-gamma. Significant IL-2, IL-4, and IFN-gamma production was observed after only 8 h of activation. Maximal levels of IL-2 and IL-4 were found 20 h after the onset of the stimulation which subsequently decreased. In contrast, IFN-gamma levels continued to increase in a period up to 40 h and then leveled off. In spite of these differences in secretion, the kinetics of accumulation of mRNA did not differ. The IL-2, IL-4, and IFN-gamma mRNA were detectable 2 h after stimulation and continued to accumulate for a period up to 20 h. In a series of 22 CD4+ clones, 21 were able to secrete all three lymphokines upon stimulation. Almost all CD8+ clones were able to produce IL-2 and IFN-gamma, but only six of the 23 CD8+ T cell clones secreted IL-4. In addition, five CD4+ (allo)antigen-specific T cell clones were tested for IL-2, IL-4, and IFN-gamma secretion upon specific stimulation. Two alloantigen-specific and two tetanus toxoid-specific T cell clones secreted IL-2, IL-4, and IFN-gamma simultaneously, whereas one alloantigen-specific T cell clone secreted IL-2 and IFN-gamma, but not IL-4. A supernatant of the CD4+ T cell clone GEO-2, that contained high levels of IFN-gamma and IL-4, was unable to induce the low affinity receptor for IgE, CD23, on a Burkitt lymphoma cell line. However, after separation of IL-4 from IFN-gamma by using HPLC, the IL-4-containing fraction-induced CD23, which could be blocked by the fraction that contained IFN-gamma and by a polyclonal rabbit anti-IL-4 antiserum. Finally, the partly purified IL-4, that was devoid of IL-2, promoted the growth of the clone GEO-2.  相似文献   

20.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号