首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ascorbate peroxidase (APX) is one of the key enzymes of the plant antioxidant system playing, along with catalase, a central role in hydrogen peroxide scavenging. An approach to further increase the knowledge about cytosolic APX gene organization can be achieved by isolating and characterisating new cDNAs, thus providing new insights about the physiological roles and regulation of these enzymes. A partial cDNA clone (corresponding to the 3’ untranslated region), cytosolic ascorbate peroxidase-related, was isolated from potato sprouts by RT-PCR. Database analysis retrieved several expressed sequence tags (ESTs) coding potato cytosolic ascorbate peroxidase, that were used to infer the complete cDNA sequence. The deduced amino acid sequence revealed high homologies with other plant cytosolic ascorbate peroxidases, confirming the reliability of the virtual cDNA. Northern blot analysis revealed the existence of a single band related to the isolated cDNA and the southern blotting results allowed the elaboration of a possible gene organization.  相似文献   

3.
4.
5.
Numerous biochemical and physiological studies have demonstrated the importance of ascorbate (ASC) as a reducing agent and antioxidant in higher plant metabolism. Of special note is the capacity of ASC to eliminate damaging activated oxygen species (AOS) including O2· and H2O2. N2-fixing legume nodules are especially vulnerable to oxidative damage because they contain large amounts of leghaemoglobin which produces AOS through spontaneous autoxidation; thus, ASC and other components of the ascorbate–reduced glutathione (ASC–GSH) pathway are critical antioxidants in nodules. In order to establish a meaningful correlation between concentrations of ASC and capacity for N2 fixation in legume root nodules, soybean ( Glycine max ) plants were treated with excess ASC via exogenous irrigation or continuous intravascular infusion through needles inserted directly into plant stems. Treatment with ASC led to striking increases in nitrogenase activity (acetylene reduction), nodule leghaemoglobin content, and activity of ASC peroxidase, a key antioxidant enzyme. The concentration of lipid peroxides, which are indicators of oxidative damage and onset of senescence, was decreased in ASC-treated nodules. These results support the conclusion that ASC is critical for N2 fixation and that elevated ASC allows nodules to maintain a greater capacity to fix N2 over longer periods.  相似文献   

6.
Excess of free iron is thought to harm plant cells by enhancing the intracellular production of reactive oxygen intermediates (ROI). Cytosolic ascorbate peroxidase (cAPX) is an iron-containing, ROI-detoxifying enzyme induced in response to iron overload or oxidative stress. We studied the expression of cAPX in leaves of de-rooted bean plants in response to iron overload. cAPX expression, i.e., mRNA and protein, was rapidly induced in response to iron overload. This induction correlated with the increase in iron content in leaves and occurred in the light as well as in the dark. Reduced glutathione (GSH), which plays an important role in activating the ROI signal transduction pathway as well as in ROI detoxification, was found to enhance the induction of APX mRNA by iron. To determine whether cAPX induction during iron overload was due to an increase in the amount of free iron, which serves as a co-factor for cAPX synthesis, or due to iron-mediated increase in ROI production, we tested the expression of APX in leaves under low oxygen pressure. This treatment, which suppresses the formation of ROI, completely abolished the induction of cAPX mRNA during iron overload, without affecting the rate of iron uptake by plants. Taken together, our results suggest that high intracellular levels of free iron in plants lead to the enhanced production of ROI, which in turn induces the expression of cAPX, possibly using GSH as an intermediate signal. We further show, using cAPX-antisense transgenic plants, that cAPX expression is essential to prevent iron-mediated tissue damage in tobacco.  相似文献   

7.
8.
9.
APX (EC, 1.11.1.11) has a key role in scavenging ROS and in protecting cells against their toxic effects in algae and higher plants. A cDNA encoding a peroxisomal ascorbate peroxidase, Am-pAPX1, was isolated from salt stressed leaves of Avicennia marina (Forsk.) Vierh. by EST library screening and its expression in the context of various environmental stresses was investigated. Am-pAPX1 contains an ORF of 286 amino acids coding for a 31.4kDa protein. The C-terminal region of the Am-pAPX1 ORF has a putative transmembrane domain and a peroxisomal targeting signal (RKKMK), suggesting peroxisomal localization. The peroxisomal localization of Am-pAPX1 was confirmed by stable transformation of the GFP-(Ala)(10)-Am-pAPX1 fusion in tobacco. RNA blot analysis revealed that Am-pAPX1 is expressed in response to salinity (NaCl) and oxidative stress (high intensity light, hydrogen peroxide application and excess iron). The isolated genomic clone of Am-pAPX1 was found to contain nine exons. A fragment of 1616bp corresponding to the 5' upstream region of Am-pAPX1 was isolated by TAIL-PCR. In silico analysis of this sequence reveals the presence of putative light and abiotic stress regulatory elements.  相似文献   

10.
B. Thomsen  H. Drumm-Herrel  H. Mohr 《Planta》1992,186(4):600-608
In photosynthetic cells the plastidic ascorbate-glutathione pathway is considered the major sequence involved in the elimination of active oxygen species. Ascorbate peroxidase (APO; EC 1.11.1.11) is an essential constituent of this pathway. In the present paper control of the appearance of APO was studied in the cotyledons of mustard (Sinapis alba L.) seedlings with the following results: (i) Two isoforms of APO (APO I, APO II) could be separated by anion-exchange chromatography; APO I is a plastidic protein, while APO II is extraplastidic, very probably cytosolic. (ii) The appearance of APO is regulated by light via phytochrome. This control is observed with both isoforms. Moreover, a strong positive control over APO II appearance (very probably over APO II synthesis) is exerted by photooxidative treatment of the plastids. (iii) Additional synthesis of extraplastidic APO II is induced by a signal created by intraplastidic pigment-photosensitized oxidative stress. The response is obligatorily oxygen-dependent and abolished by quenchers of singlet oxygen such as -tocopherol and p-benzoquinone. (iv) A short-term (4 h) photooxidative treatment suffices to saturate the signal. Signal transduction cannot be abolished or diminished by replacing the plants in non-photooxidizing conditions. Several observations indicate that control of APO synthesis by active oxygen is not an experimental artifact but a natural phenomenon.Abbreviations APO ascorbate-specific peroxidase (EC 1.11.1.11) - D darkness - FPLC fast protein liquid chromatography - FR far-red light (3.5 W · m–2) - NF Norflurazon - R red light (6.8 W · m–2) This research was supported by a grant from the Deutsche For-schungsgemeinschaft. B. Th. was the recipient of a stipend from the Studienstiftung des Deutschen Volkes.  相似文献   

11.
A second cytosolic ascorbate peroxidase (cAPX; EC 1.11.1.11) gene from Arabidopsis thaliana has been characterised. This second gene (designated APX1b) maps to linkage group 3 and potentially encodes a cAPX as closely related to that from other dicotyledonous species as to the other member of this gene family (Kubo et al, 1993, FEBS Lett 315: 313–317; here designated APX1a), which maps to linkage group 1. In contrast, the lack of sequence similarity in non-coding regions of the genes implies that they are differentially regulated. Under non-stressed conditions only APX1a is expressed. APX1b was identified during low-stringency probing using a cDNA coding for pea cAPX which, in turn, was recovered from a cDNA library by immunoscreening with an antiserum raised against tea plastidial APX (pAPX). No pAPX cDNAs were recovered, despite the antiserum displaying specificity for pAPX in Western blots.Abbreviations ATG methionine translation initiation codon - bp base pair - cAPX cytosolic ascorbate peroxidase - pAPX plastidial ascorbate peroxidase - RFLP restriction fragment length polymorphism Accession numbers: The APX1b sequence is in the EMBL database under accession number X80036M.S. gratefully acknowledges the support from the Junta Nacional de Investigaçâo Cientifica e Tecnológia, Portugal (grant number BD/394/90-IE). This work was supported by the Biotechnological and Biological Sciences Research Council through a grant-in-aid to the John Innes Centre.  相似文献   

12.
Ascorbate peroxidase (APX) is a crucial, haeme-containing enzyme of the ascorbate glutathione cycle that detoxifies reactive oxygen species in plants by catalyzing the conversion of hydrogen peroxide to water using ascorbate as a specific electron donor. Different APX isoforms are present in discrete subcellular compartments in rice and their expression is stress regulated. We revealed the homology model of OsAPX1 protein using the crystal structure of soybean GmAPX1 (PDB ID: 2XIF) as template by Modeller 9.12. The resultant OsAPX1 model structure was refined by PROCHECK, ProSA, Verify3D and RMSD that indicated the model structure is reliable with 83 % amino acid sequence identity with template, RMSD (1.4 Å), Verify3D (86.06 %), Zscores (-8.44) and Ramachandran plot analysis showed that conformations for 94.6% of amino acid residues are within the most favoured regions. Investigation revealed two conserved signatures for haeme ligand binding and peroxidase activity in the alpha helical region that may play a significant role during stress.  相似文献   

13.
Ascrobate free-radical reductase (EC 1.6.5.4) from potato tubers was purified to apparent homogencity by a method which included ammonium-sulfate precipitation, gel filtration and chromatography on diethylaminoethyl cellulose and hydroxylapatite. Gel filtration and gel electrophoresis showed that the purified enzyme was monomeric with a molecular weight of about 42 000. Enzyme activity was heat lable and severely inhibited by thiol reagents. The Km values for enzyme substrates were estimated.Abbreviations AFR ascorbate free radical - AsA ascorbic acid - DE-32(52) diethylaminoethyl cellulose - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

14.
目的:研究枸杞抗坏血酸过氧化物酶基因(ascorbate peroxidase,LmAPX)在原核中的表达和酶学特性以及在酵母菌中的抗氧化能力,为进一步研究逆境诱导的抗氧化胁迫的作用机理奠定理论基础。方法:将LmAPX转入大肠杆菌BL21中进行异源表达,采用 Ni2+亲和层析,纯化重组蛋白,并对不同温度和pH值下的酶活进行研究,Lineweaver-Burk双倒数作图法测定该酶的Km和Vmax值。将LmAPX转入酵母菌株W303中进行H2O2和NaCl氧化胁迫处理。结果:该酶的最适温度和最适pH值分别为40℃和6.5。当抗坏血酸(Ascorbic acid,AsA)浓度过量时,对H2O2的Km和Vmax分别是0.17±0.02 mmol/L和11.78±1.88 mmol/min·mg;当H2O2浓度过量时,对AsA的Km和Vmax分别是2.19±0.40 mmol/L和58.82±3.51 mmol/min·mg。含有LmAPX基因的酵母菌株,在半乳糖的诱导下在8 mmol/L H2O2和100 mmol/L NaCl的培养基上的生长都明显优于对照组。结论:LmAPX蛋白具有很好的抗氧化性和耐盐性。  相似文献   

15.
Powdery mildew, caused by Uncinula necator Burr, is one of the most seriously damaging diseases of grapevine all over the world. To gain the novel gene and investigate the resistance mechanism in Chinese Wild Vitis pseudoreticulata clone Baihe-35-1, mRNA differential display was employed to study the differential expression of the resistant gene to the disease of it when inoculated by Uncinula necator under natural field conditions, 5′ RACE and 3′ RACE have been used to clone the whole cDNA sequences of VpAPX, the novel gene related to Ascorbate Peroxidase which involved in resistant to the disease, is composed of specific sequence 1077 bp and has an open reading frame of 750 bp coding for 250 amino acid residues with a molecular weight of 27.566 kDa. The VpAPX gene was obtained by polymerase chain reaction (PCR) with the special primers synthesized according to the sequences of cDNA, and further cloned it into the pGEM-T easy vector. The cloned VpAPX gene was cut out again with two restriction enzymes and was inserted into the prokaryotic expression vector pGEX-4T-1, then transferred into E. coli BL21. As result, GST-VpAPX fusion protein was successfully expressed by induction of IPTG and purified by GST affinity resin. After injecting rabbit, the polyclonal antibodies were produced. Western blot analyses showed that the antibody reacted specifically to GST-VpAPX fusion protein and the titer for this antibody is 105. This research made the foundation to transform the VpAPX gene into grape plants for follow research in processing. Ling Lin, Xiping Wang: These two authors contributed equally to this work.  相似文献   

16.
17.
Ectomycorrhiza formation is a complex developmental process that is still not well understood. To study this process, we identified genetic markers for mycorrhiza development by differential screening of a cDNA library obtained from fully developed Picea abies – Amanita muscaria mycorrhizas. Twenty-three cDNA clones were identified that showed significantly altered gene expression during the ectomycorrhizal interaction. A detailed analysis was performed for two fungal cDNA clones, SC13 and SC25, exhibiting the most pronounced differences. SC13 encodes a protein of 184 amino acid residues that shows no homology with any sequence in databases. It was highly expressed in non-mycorrhizal hyphae, whereas its expression was decreased at least 50-fold in mycorrhizas and fruit bodies. SC25 encodes a protein of 198 residues that shows weak sequence homology with extensin-like plant proteins. The expression of this gene was weak in non-mycorrhizal hyphae but approx. 30-fold higher in mycorrhizas and fruit bodies. Because the expression of both developmentally regulated fungal genes was identical for mycorrhizas and fruit bodies, a common regulation mechanism for both developmental processes is proposed.  相似文献   

18.
D E Monks  J H Goode    R E Dewey 《Plant physiology》1996,110(4):1197-1205
An expressed sequence tag from Arabidopsis that displayed sequence homology to mammalian and yeast choline kinases was used to isolate choline kinase-like cDNAs from soybean (Glycine max L.). Two distinct cDNAs, designated GmCK1 and GmCK2, were recovered that possessed full-length reading frames, each sharing approximately 32% identity at the predicted amino acid level with the rat choline kinase. A third unique choline kinase-like cDNA, GmCK3, was also identified but was not full length. Heterologous expression of GmCK1 in yeast (Saccharomyces cerevisiae) and GmCK2 in both yeast and Escherichia coli demonstrated that each encodes choline kinase activity. In addition to choline, other potential substrates for the choline kinase enzyme include ethanolamine, monomethylethanolamine (MME), and dimethylethanolamine (DME). Both soybean choline kinase isoforms demonstrated negligible ethanolamine kinase activity. Competitive inhibition assays, however, revealed very distinct differences in their responses to DME and MME. DME effectively inhibited only the GmCK2-encoded choline kinase activity. Although MME failed to effectively inhibit either reaction, an unexpected enhancement of choline kinase activity was observed specifically with the GmCK1-encoded enzyme. These results show that choline kinase is encoded by a small, multigene family in soybean comprising two or more distinct isoforms that exhibit both similarities and differences with regard to substrate specificity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号