首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fluorescence decay of apoazurin derived from Pseudomonas aeruginosa is monoexponential. By this criterion the population of molecules of apoazurin is homogeneous. The emission anisotropy factor and the absorption anisotropy factor at the red edge of the absorption band assume similar values, showing that the tryptophan residue in apoazurin has the same asymmetric environment both in the ground and excited states. This finding suggests tight packing of the protein at the tryptophan environment. Native azurin does not decay monoexponentially. Moreover, comparison between the quantum yield calculated from the decay kinetics and the one measured directly shows that the majority of the azurin molecules are not fluorescent. There is thus variability in the structure of azurin molecules with an equilibration time that is longer than the fluorescence lifetime. Different asymmetric environment was found for the tryptophan residue in oxidized and reduced holoprotein and in apoazurin, as studied by the circular polarization of the fluorescence. D(2)O increases the fluorescence lifetime of apoazurin by 6 percent, compared to the lifetime in H(2)O solution; therefore water molecules may have access to the tryptophan residue, though the latter is situated in a hydrophobic environment.  相似文献   

2.
J B Ross  K W Rousslang  L Brand 《Biochemistry》1981,20(15):4361-4369
The direct time-resolved fluorescence anisotropy of the single tryptophan residue in the polypeptide hormone adrenocorticotropin-(1-24) (ACTH) and the fluorescence decay kinetics of this residue (Trp-9) are reported. Two rotational correlation times are observed. One, occurring on the subnanosecond time scale, reflects the rotation of the indole ring, and the other, which extends into the nanosecond range, is dominated by the complex motions of the polypeptide chain. The fluorescence lifetimes of the single tryptophan in glucagon (Trp-25) and the 23-26 glucagon peptide were also measured. In all cases the fluorescence kinetics were satisfied by a double-exponential decay law. The fluorescence lifetimes of several tryptophan and indole derivatives and two tryptophan dipeptides were examined in order to interpret the kinetics. In close agreement with the findings of Szabo and Rayner [Szabo, A. G., & Rayner, D. M. (1980) J. Am. Chem. Soc. 102, 554-563], the tryptophan zwitterion exhibits emission wavelength dependent double-exponential decay kinetics. At 320 nm tau 1 = 3.2 ns and tau 2 = 0.8 ns, with alpha 1 = 0.7 and alpha 2 = 0.3. Above 380 nm only the 3.2-ns component is observed. By contrast the neutral derivative N-acetyltryptophanamide has a single exponential decay of 3.0 ns. The multiexponential decay kinetics of the polypeptides are discussed in terms of flexibility of the polypeptide chain and neighboring side-chain interactions.  相似文献   

3.
J E Hansen  D G Steel    A Gafni 《Biophysical journal》1996,71(4):2138-2143
Azurin, a blue copper protein from the bacterial species Pseudomonas aeruginosa, contains a single tryptophan residue. Previous fluorescence measurements indicate that this residue is highly constrained and unusually inaccessible to water. In the apoprotein this residue also possesses a long-lived room-temperature phosphorescence (RTP), the nonexponential decay of which can be resolved into two major components associated with lifetimes of 417 and 592 ms, which likely originate from at least two conformations of the protein. The relative weights of these two decay components change with pH in good correlation with a change in protonation of His-35, which has been studied in Cu(II) azurin. Interestingly, the structural changes characterized in earlier work have little effect on the fluorescence decay and appear to occur away from the tryptophan residue. However, in the present work, the two RTP lifetimes suggest conformations with different structural rigidities in the vicinity of the tryptophan residue. The active conformation that predominates below a pH of 5.6 has the shorter lifetime and is less rigid. Phosphorescence decays of several metal derivatives of azurin were also measured and revealed strong similarities to that of apoazurin, indicating that the structural constraints upon the metal-binding site are imposed predominately by the protein.  相似文献   

4.
Using multifrequency phase/modulation fluorometry, we have studied the fluorescence decay of the single tryptophan residue of ribonuclease T1 (RNase T1). At neutral pH (7.4) we find that the decay is a double exponential (tau 1 = 3.74 ns, tau 2 = 1.06 ns, f1 = 0.945), in agreement with results from pulsed fluorometry. At pH 5.5 the decay is well described by a single decay time (tau = 3.8 ns). Alternatively, we have fitted the frequency domain data by a distribution of lifetimes. Temperature dependence studies were performed. If analyzed via a double exponential model, the activation energy for the inverse of the short lifetime component (at pH 7.4) is found to be 3.6 kcal/mol, as compared with a value of 1.0 kcal/mol for the activation energy of the inverse of the long lifetime component. If analyzed via the distribution model, the width of the distribution is found to increase at higher temperature. We have also repeated, using lifetime measurements, the temperature dependence of the acrylamide quenching of the fluorescence of RNase T1 at pH 5.5. We find an activation energy of 8 kcal/mol for acrylamide quenching, in agreement with our earlier report.  相似文献   

5.
Nonradiative dissipation of excitation energy is the major photoprotective mechanism in plants. The formation of zeaxanthin in the antenna of photosystem II has been shown to correlate with the onset of nonphotochemical quenching in vivo. We have used recombinant CP29 protein, over-expressed in Escherichia coli and refolded in vitro with purified pigments, to obtain a protein indistinguishable from the native complex extracted from thylakoids, binding either violaxanthin or zeaxanthin together with lutein. These recombinant proteins and the native CP29 were used to measure steady-state chlorophyll fluorescence emission and fluorescence decay kinetics. We found that the presence of zeaxanthin bound to CP29 induces a approximately 35% decrease in fluorescence yield with respect to the control proteins (the native and zeaxanthin-free reconstituted proteins). Fluorescence decay kinetics showed that four components are always present but lifetimes (tau) as well as relative fluorescence quantum yields (rfqy) of the two long-lived components (tau3 and tau4) are modified by the presence of zeaxanthin. The most relevant changes are observed in the rfqy of tau3 and in the average lifetime ( approximately 2.4 ns with zeaxanthin and 3.2-3.4 ns in the control proteins). When studied in vitro, no significant effect of acidic pH (5.2-5.3) is observed on chlorophyll A fluorescence yield or kinetics. The data presented show that recombinant CP29 is able to bind zeaxanthin and this protein-bound zeaxanthin induces a significant quenching effect.  相似文献   

6.
The binding of 4',6-diamidino-2-phenylindole (DAPI) to bovine serum albumin (BSA) has been investigated between pH 6 and 8, in 0.05 M phosphate buffer at 20 degrees C, by fluorescence titrations and the results analyzed according to a procedure previously reported (R. Favilla and A. Mazzini, Biochim. Biophys. Acta 788 (1984) 48). The dye binds to the protein with a blue shift of about 4 nm in its fluorescence emission maximum, but with an enhancement factor of 10 of its fluorescence quantum yield. The dissociation constant decreases from 100 microM to 54 microM as the pH is increased from 6 to 8, with a constant number of nearly three equivalent binding sites. The complete displacement of DAPI bound to BSA by Ca2+ suggests a possible specificity of this substantially electrostatic interaction. The fluorescence decay of DAPI bound to the protein shows a double exponential kinetics, with a tau 1 = 0.97 ns and tau 2 = 2.78 ns. These results, compared with those obtained for DAPI alone, tau 1 = 0.16 ns and tau 2 = 2.8 ns, are rationalized in terms of two different rotamers of DAPI. Both rotamers are able to bind to the protein, but only one of them undergoes an intramolecular proton transfer, from the 6-amidinium group to the indole aromatic ring, in the excited singlet state of DAPI alone. When DAPI interacts with BSA this transfer does not occur and consequently a large increase of fluorescence is observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A time-resolved fluorescence study of azurin and metalloazurin derivatives   总被引:2,自引:0,他引:2  
C M Hutnik  A G Szabo 《Biochemistry》1989,28(9):3935-3939
Nickel and cobalt derivatives of Pseudomonas fluorescens (ATCC 13525) azurin were prepared and their steady-state fluorescence and time-resolved fluorescence monitored. Like the copper-containing native protein, the fluorescence decay of both metallo derivatives was best fit to a sum of three exponentials, whereas the apoazurin from which they were prepared obeyed single-exponential decay kinetics. However, comparison of the lifetimes and fractional of each of the components in these derivatives to those in the oxidized and reduced native proteins revealed significant differences. These results suggest that the presence of a metal center in azurin imparts a conformational heterogeneity which is strongly dependent on the nature of the metal center. Further, the results are used to comment on current ideas concerning the geometry of the active site in this redox protein.  相似文献   

8.
C M Hutnik  A G Szabo 《Biochemistry》1989,28(9):3923-3934
Homologous azurins from Pseudomonas fluorescens (ATCC 13525) and Pseudomonas aeruginosa (ATCC 10145) were examined by a number of electrophoretic techniques, and their copper to protein stoichiometry was determined by atomic absorption and amino acid analysis. Provided that the spectral ratio (A620/A280 or A625/A280) was 0.53 and there was no evidence of a Soret band in the absorption spectrum, then these criteria can be used to judge the homogeneity of the azurin sample. If the spectral ratio was less than 0.50, evidence suggested a nonreconstitutable, non-trypsin-digestible apoazurin was present. The fluorescence decay of these homogeneous holoazurins included three components, not two as previously reported [Szabo, A. G., et al. (1983) Biophys. J. 41, 233-244]. Whereas the decay times were nearly the same for the azurins from the different sources, the fractional fluorescence of each component varied with the azurin measured. The fluorescence of the corresponding apoazurins, prepared by a refined procedure, obeyed monoexponential decay kinetics. The temperature and pH effects on the fluorescence behavior of these homologous azurins are presented with the pH study suggesting an influence by a group which titrates between pH 5 and pH 7. When taken together these results confirm that the multiexponential decay behavior originates from conformational heterogeneity and not from contamination by an apo form.  相似文献   

9.
The fluorescence properties of the single tryptophanyl residue present in amicyanin from Thiobacillus versutus are very similar to those of azurin from Pseudomonas aeruginosa and other mononuclear blue copper proteins. The emission maximum is well structured and centered at 318 nm. The quantum yield is strongly affected by the presence of copper, the removal of which is accompanied by a more than sixfold increase in fluorescence, without change in shape. The fluorescence decay of holo-amicyanin is heterogeneous with a longer component of 5.7 ns and a shorter one of 0.7 ns accounting for 90% of the total emitting molecules. Copper-free amicyanin shows instead a single exponential decay (3.3 ns) of intrinsic fluorescence. This lifetime decreases as the temperature increases as does the longer lifetime component of holoamicyanin.  相似文献   

10.
G Desie  N Boens  F C De Schryver 《Biochemistry》1986,25(25):8301-8308
The tryptophan environments in crystalline alpha-chymotrypsin were investigated by fluorescence. The heterogeneous emission from this multitryptophan enzyme was resolved by time-correlated fluorescence spectroscopy. The fluorescence decays at 296-nm laser excitation and various emission wavelengths could be characterized by a triple-exponential function with decay times tau 1 = 150 +/- 50 ps, tau 2 = 1.45 +/- 0.25 ns, and tau 3 = 4.2 +/- 0.4 ns. The corresponding decay-associated emission spectra of the three components had maxima at about 325, 332, and 343 nm. The three decay components in this enzyme can be correlated with X-ray crystallographic data [Birktoft, J.J., & Blow, D.M. (1972) J. Mol. Biol. 68, 187-240]. Inter- and intramolecular tryptophan-tryptophan energy-transfer efficiencies in crystalline alpha-chymotrypsin were computed from the accurately known positions and orientations of all tryptophan residues. These calculations indicate that the three fluorescence decay components in crystalline alpha-chymotrypsin can be assigned to three distinct classes of tryptophyl residues. Because of the different proximity of tryptophan residues to neighboring internal quenching groups, the decay times of the three classes are different. Decay tau 1 can be assigned to Trp-172 and Trp-215 and tau 2 to Trp-51 and Trp-237, while the tryptophyl residues 27, 29, 141, and 207 all have decay time tau 3.  相似文献   

11.
The (time-resolved) fluorescence properties of dityrosine in the outermost layer of the spore wall of Saccharomyces cerevisiae were investigated. Steady-state spectra revealed an emission maximum at 404 nm and a corresponding excitation maximum at 326 nm. The relative fluorescence quantum yield decreased with increasing proton concentration. The fluorescence decay of yeast spores was found to be nonexponential and differed pronouncedly from that of unbound dityrosine in water. Analysis of the spore decay recorded at lambda ex = 323 nm and lambda em = 404 nm by an exponential series (ESM) algorithm revealed a bimodal lifetime distribution with maxima centered at tau 1C = 0.5 ns and tau 2C = 2.6 ns. The relative amplitudes of the two distributions are shown to depend on the emission wavelength, indicating contributions from spectrally different dityrosine chromophores. On quenching the spore fluorescence with acrylamide, a downward curvature of the Stern-Volmer plot was obtained. A multitude of chromophores more or less shielded from solvent in the spore wall is proposed to account for the nonlinear quenching of the total spore fluorescence. Analysis of the fluorescence anisotropy decay revealed two rotational correlation times (phi 1 = 0.9 ns and phi 2 = 30.6 ns) or a bimodal distribution of rotational correlation times (centers at 0.7 ns and 40 ns) when the data were analyzed by the maximum entropy method (MEM). We present a model that accounts for the differences between unbound (aqueous) and bound (incorporated in the spore wall) dityrosine fluorescence. The main feature of the photophysical model for yeast spores is the presence of at least two species of dityrosine chromophores differing in their chemical environments. A hypothetical photobiological role of these fluorophores in the spore wall is discussed: the protection of the spore genome from mutagenic UV light.  相似文献   

12.
The fluorescence decay kinetics at different ranges of the emission spectrum is reported for 17 proteins. Out of eight proteins containing a single tryptophan residue per molecule, seven proteins display multiexponential decay kinetics, suggesting that variability in protein structure may exist for most proteins. Tryptophan residues whose fluorescence spectrum is red shifted may have lifetimes longer than 7 ns. Such long lifetimes have not been detected in any of the denatured proteins studied, indicating that in native proteins the tryptophans having a red-shifted spectrum are affected by the tertiary structure of the protein. The fluorescence decay kinetics of ten denatured proteins studied obey multiexponential decay functions. It is therefore concluded that the tryptophan residues in denatured proteins can be grouped in two classes. The first characterized by a relatively long lifetime of about 4 ns and the second has a short lifetime of about 1.5 ns. The emission spectrum of the group which is characterized by the longer lifetime is red shifted relative to the emission spectrum of the group characterized by the shorter lifetime. A comparison of the decay data with the quantum yield of the proteins raises the possibility that a subgroup of the tryptophan residues is fully quenched. It is noteworthy that despite this heterogeneity in the environment of tryptophan residues in each denatured protein, almost the same decay kinetics has been obtained for all the denatured proteins studied in spite of the vastly different primary structures. It is therefore concluded that each tryptophan residue interacts in a more-or-less random manner with other groups on the polypeptide chain, and that on the average the different tryptophan residues in denatured proteins have a similar type of environment.  相似文献   

13.
A reference method for the deconvolution of polarized fluorescence decay data is described. Fluorescence lifetime determinations for p-terphenyl, p-bis[2-(5-phenyloxazolyl)]benzene and N-acetyltryptophanamide (AcTrpNH2) show that with this method more reliable fits of the decays can be made than with the scatterer method, which is most frequently used. Analysis of the AcTrpNH2 decay with p-terphenyl as the reference compound yields an excellent fit with lifetimes of 2.985 ns for AcTrpNH2 and 1.099 ns for p-terphenyl (20 degrees C), whereas the AcTrpNH2 decay cannot be satisfactorily fitted when the scatterer method is used. The frequency of the detected photons is varied to determine the conditions where pulse pile-up starts to affect the measured decays. At detection frequencies of 5 kHz and 15 kHz, which corresponds to 1.7% and 5% respectively of the rate of the excitation photons no effects are found. Decays measured at 30 kHz (10%) are distorted, indicating that pile-up effects play a role at this frequency. The fluorescence and fluorescence anisotropy decays of the tryptophan residues in the proteins human serum albumin, horse liver alcohol dehydrogenase and lysozyme have been reanalysed with the reference method. The single tryptophan residue of the albumin is shown to be characterized by a triple-exponential fluorescence decay. The anisotropy decay of albumin was found to be mono-exponential with a rotational correlation time of 26 ns (20 degrees C). The alcohol dehydrogenase has two different tryptophan residues to which single lifetimes are assigned. It is found that the rotational correlation time for the dehydrogenase changes with excitation wavelength (33 ns for lambda ex = 295 nm and 36 ns for lambda ex = 300 nm at 20 degrees C), indicating a nonspherical protein molecule. Lysozyme has six tryptophan residues, which give rise to a triple-exponential fluorescence decay. A single-exponential decay with a rotational correlation time of 3.8 ns is found for the anisotropy. This correlation time is significantly shorter than that arising from the overall rotation and probably originates from intramolecular, segmental motion.  相似文献   

14.
Enzyme I of the bacterial phosphotransferase system can exist in a monomer/dimer equilibrium which may have functional significance. Each monomer contains two tryptophan residues. It is demonstrated that the decay of both the monomer and the dimer can be described by a biexponential. The decay times depend on the temperature and at 6 degrees C the decay times are tau 1 = 0.4 ns and tau 2 = 3.2 ns for the monomer and tau 3 = 3.2 ns and tau 4 = 7.2 ns for the dimer form of the enzyme. The changes in the fluorescence decay parameters can be utilized to measure the equilibrium constant for the monomer/dimer transition.  相似文献   

15.
The two tryptophan residues of ferredoxin from Halobacterium of the Dead Sea differ in their fluorescence characteristics. One of these tryptophan residues (class 1) absorbs more to the red and is thus probably in a more apolar environment than the other (class 2). Upon removal of the ferric ions, i.e., in the apoferredoxin, a 2.2-fold increase in the quantum yield of fluorescence is observed. A double exponential decay of the fluorescence is found for ferredoxin, reduced ferredoxin, as well as for the apoferredoxin. The longer decay time assumes a constant value of 6.9 ns in all three cases, indicating that it originates in a tryptophan residue which is not affected by changes in the Fe3+ binding site (class 2 tryptophan). The shorter decay component increases gradually from 0.55 ns in oxidized ferredoxin, through 0.80 ns in the reduced ferredoxin to 1.24 ns in the apoprotein. This decay component is thus assumed to be largely due to the second tryptophan residue of the protein (class 1) located close to the Fe3+ binding site. On the other hand, the relative decay amplitude of the class 2 tryptophan is doubled upon formation of apoferredoxin. It is concluded that the class 1 tryptophan is quenched by the active site ferric ions and that the class 2 tryptophan is partially exposed to a polar environment. Whereas class 1 tryptophan may be similar to the single nonfluorescent tryptophan of spinach ferredoxin, class 2 tryptophan is found in a peptide which is present only in halophilic ferredoxins. Conformational changes occur in the molecule upon removal—but not reduction—of the ferric ions, causing the environment of the class 2 tryptophan to become more hydrophobic. It is possible that the class 1 tryptophan is associated with the occurrence of a higher redox potential in this ferredoxin, when compared with chloroplast-type ferredoxins.  相似文献   

16.
We have carried out a picosecond fluorescence study of holo- and apoazurins of Pseudomonas aeruginosa (azurin Pae), Alcaligenes faecilis (azurin Afe), and Alcaligenes denitrificans (azurin Ade). Azurin Pae contains a single, buried tryptophyl residue; azurin Afe, a single surface tryptophyl residue; and azurin Ade, tryptophyl residues in both environments. From anisotropy measurements we conclude that the interiors of azurins Pae and Ade are not mobile enough to enable motion of the indole ring on a nanosecond time scale. The exposed tryptophans in azurins Afe and Ade show considerable mobility on a few hundred picosecond time scale. The quenching of tryptophan fluorescence observed in the holoproteins is interpreted in terms of electron transfer from excited-state tryptophan to Cu(II). The observed rates are near the maximum predicted by Marcus theory for the separation of donor and acceptor. The involvement of protein matrix and donor mobility for electron transfer is discussed. The two single-tryptophan-containing proteins enable the more complex fluorescence behavior of the two tryptophans of azurin Ade to be understood. The single-exponential fluorescence decay observed for azurin Pae and the nonexponential fluorescence decay observed for azurin Afe are discussed in terms of current models for tryptophan photophysics.  相似文献   

17.
H A Berman  J Yguerabide  P Taylor 《Biochemistry》1985,24(25):7140-7147
Steady-state and time-correlated fluorescence polarizations have been examined for selected complexes and covalent conjugates of the 11S and (17 + 13)S forms of Torpedo acetylcholinesterase. The 11S form exists as a tetramer of apparently identical subunits, whereas the (17 + 13)S forms contain two or three sets of tetramers disulfide-linked to an elongated collagen-like tail unit. Pyrenebutyl methylphosphonofluoridate and (dansylsulfonamido)pentyl methylphosphonofluoridate were conjugated at the active center serine whereas propidium was employed as a fluorescent ligand for the spatially removed peripheral anionic site. Steady-state polarization of the pyrenebutyl conjugates indicates rotational correlation times of approximately 400 ns for the 11S species and greater than 1100 ns for the (17 + 13)S species. Hence, the tail unit severely restricts rotational motion of the catalytic subunits. Time-correlated fluorescence polarization analysis of the 11S species indicates multiple rotational correlation times. Anisotropy decay of the propidium complex (tau = 6 ns) occurs in exponential manner with a rotational correlation time of approximately 150 ns, while covalent adducts at the active center exhibit rotational correlation times greater than or equal to 300 ns. Anisotropy decay of the (dansylsulfonamido)pentyl conjugate (tau = 16 ns) appears exponential with a correlation time of approximately 320 ns, whereas decay of the pyrenebutyl conjugate (tau = 100 ns) is described by two correlation times, phi S = 18 ns and phi L = 320 ns, of small (15%) and large (85%) amplitudes, respectively. Two limiting models have been considered to explain the results.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
M She  W J Dong  P K Umeda    H C Cheung 《Biophysical journal》1997,73(2):1042-1055
The regulatory domain of troponin C (TnC) from chicken skeletal muscle was studied using genetically generated mutants which contained a single tryptophan at positions 22, 52, and 90. The quantum yields of Trp-22 are 0.33 and 0.25 in the presence of Mg2+ (2-Mg state) and Ca2+ (4-Ca state), respectively. The large quantum yield of the 2-Mg state is due to a relatively small nonradiative decay rate and consistent with the emission peak at 331 nm. The intensity decay of this state is monoexponential with a single lifetime of 5.65 ns, independent of wavelength. In the 4-Ca state, the decay is biexponential with the mean of the two lifetimes increasing from 4.54 to 4.92 ns across the emission band. The decay-associated spectrum of the short lifetime is red-shifted by 19 nm relative to the steady-state spectrum. The decay of Trp-52 is biexponential in the 2-Mg state and triexponential in the 4-Ca state. The decay of Trp-90 requires three exponential terms for a satisfactory fit, but can be fitted with two exponential terms in the 4-Ca state. The lower quantum yields (< 0.15) of these two tryptophans are due to a combination of smaller radiative and larger nonradiative decay rates. The results from Trp-22 suggest a homogeneous ground-state indole ring in the absence of bound Ca2+ at the regulatory sites and a ground-state heterogeneity induced by activator Ca2+. The Ca(2+)-induced environmental changes of Trp-52 and Trp-90 deviate from those predicted by a modeled structure of the 4-Ca state. The anisotropy decays of all three tryptophans show two rotational correlation times. The long correlation times (phi 1 = 8.1-8.3 ns) derived from Trp-22 and Trp-90 suggest an asymmetric hydrodynamic shape. TnC becomes more asymmetric upon binding activator Ca2+ (phi 1 = 10.1-11.6 ns). The values of phi 1 obtained from Trp-52 are 3-4 ns shorter than those from Trp-22 and Trp-90, and these reduced correlation times may be related to the mobility of the residue and/or local segmental flexibility.  相似文献   

19.
Photophysics of tryptophan in bacteriophage T4 lysozymes   总被引:7,自引:0,他引:7  
D L Harris  B S Hudson 《Biochemistry》1990,29(22):5276-5285
Bacteriophage T4 lysozyme contains three tryptophan residues in distinct environments. Lysozymes with one or two of these residues replaced by tyrosine are used to characterize the photophysics of tryptophan in these individual sites. The fluorescence spectra, average lifetimes, and quantum yields of these three single-tryptophan variants are understandable in terms of the neighboring residues. The emission spectra and radiative lifetimes are found to be the same for all three species while the quantum yield and decay kinetics are quite distinct. The variation of the average nonradiative rate constant is correlated with neighboring quenching groups. Quenching by I- correlates with exposure of the tryptophan residue based on the crystal structure. Complex behavior is observed for the time dependence of the fluorescence decay in all three cases, including that of the immobile tryptophan-138 residue. The complexity of the fluorescence decay is ascribed to heterogeneity in the nonradiative rate constant among microstates. Energy transfer between tryptophan residues is inferred to occur from comparison of the quantum yields of the two-tryptophan and single-tryptophan proteins and is discussed in terms of the F?rster mechanism.  相似文献   

20.
The interaction of several 3,6-diaminoacridines with DNAs of various base composition has been studied by steady-state and transient fluorescence measurements. The acridine dyes employed are of the following two classes: class I - proflavine, acriflavine and 10-benzyl proflavine; class II - acridine yellow, 10-methyl acridine yellow and benzoflavine. It is found that the fluorescence decay kinetics follows a single-exponential decay law for free dye and the poly[d(A-T)]-dye complex, while that of the dye bound to DNA obeys a two-exponential decay law. The long lifetime (tau 1) for each complex is almost the same as the lifetime for the poly[d(A-T)]-dye complex, and the amplitude alpha 1 decreases with increasing GC content of DNA. The fluorescence quantum yields (phi F) of dye upon binding to DNA decrease with increasing GC content; the phi F values for class I are nearly zero when bound to poly(dG) X poly(dC), but those for class II are not zero. This is in harmony with the finding that GMP almost completely quenches the fluorescence for class I, whereas a weak fluorescence arises from the GMP-dye complex for class II. The fluorescence spectra of the DNA-dye complexes gradually shift toward longer wavelengths with increasing GC content. In this connection, the fluorescence decay parameters show a dependence on the emission wavelength; alpha 1 decreases with an increase in the emission wavelength. In view of these results, it is proposed that the decay behavior of the DNA-dye complexes has its origin in the heterogeneity of the emitting sites; the long lifetime tau 1 results from the dye bound to AT-AT sites, while the short lifetime tau 2 is attributable to the dye bound in the vicinity of GC pairs. Since GC pairs almost completely quench the fluorescence for class I, partly intercalated or externally bound dye molecules may play an important role in the component tau 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号