首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
Activation domains drive nucleosome eviction by SWI/SNF   总被引:4,自引:0,他引:4  
  相似文献   

4.
5.
6.
Regulation of gene expression requires dynamic changes in chromatin, but the nature of these changes is not well understood. Here, we show that progesterone treatment of cultured cells leads to recruitment of progesterone receptor (PR) and SWI/SNF-related complexes to Mouse Mammary Tumor Virus (MMTV) promoter, accompanied by displacement of histones H2A and H2B from the nucleosome containing the receptor binding sites, but not from adjacent nucleosomes. PR recruits SWI/SNF to MMTV nucleosomes in vitro and facilitates synergistic binding of receptors and nuclear factor 1 to the promoter. In nucleosomes assembled on MMTV or mouse rDNA promoter sequences, SWI/SNF catalyzes ATP-dependent sliding of the histone octamer followed only on the MMTV promoter by displacement of histones H2A and H2B. In MMTV nucleosome arrays, SWI/SNF displaces H2A and H2B from nucleosome B and not from the adjacent nucleosome. Thus, the outcome of nucleosome remodeling by SWI/SNF depends on DNA sequence.  相似文献   

7.
C Logie  C L Peterson 《The EMBO journal》1997,16(22):6772-6782
A novel, quantitative nucleosome array assay has been developed that couples the activity of a nucleosome 'remodeling' activity to restriction endonuclease activity. This assay has been used to determine the kinetic parameters of ATP-dependent nucleosome disruption by the yeast SWI/SNF complex. Our results support a catalytic mode of action for SWI/SNF in the absence of nucleosome targeting. In this quantitative assay SWI/SNF and ATP lead to a 100-fold increase in nucleosomal DNA accessibility, and initial rate measurements indicate that the complex can remodel one nucleosome every 4.5 min on an 11mer nucleosome array. In contrast to SWI/SNF action on mononucleosomes, we find that the SWI/SNF remodeling reaction on a nucleosome array is a highly reversible process. This result suggests that recovery from SWI/SNF action involves interactions among nucleosomes. The biophysical properties of model nucleosome arrays, coupled with the ease with which homogeneous arrays can be reconstituted and the DNA accessibility analyzed, makes the described array system generally applicable for functional analysis of other nucleosome remodeling enzymes, including histone acetyltransferases.  相似文献   

8.
9.
10.
11.
Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier.  相似文献   

12.
Hassan AH  Neely KE  Workman JL 《Cell》2001,104(6):817-827
  相似文献   

13.
14.
Previous studies have identified sin mutations that alleviate the requirement for the yeast SWI/SNF chromatin remodelling complex, which include point changes in the yeast genes encoding core histones. Here we characterise the biochemical properties of nucleosomes bearing these mutations. We find that sin mutant nucleosomes have a high inherent thermal mobility. As the SWI/SNF complex can alter nucleosome positioning, the higher mobility of sin mutant nucleosomes provides a means by which sin mutations may substitute for SWI/SNF function. The location of sin mutations also provides a new opportunity for insights into the mechanism for nucleosome mobilisation. We find that both mutations altering histone DNA contacts at the nucleosome dyad and mutations in the dimer-tetramer interface influence nucleosome mobility. Furthermore, incorporation of H2A.Z into nucleosomes, which also alters dimer-tetramer interactions, affects nucleosome mobility. Thus, variation of histone sequence or subtype provides a means by which eukaryotes may regulate access to chromatin through alterations to nucleosome mobility.  相似文献   

15.
Chromatin remodeling of the yeast PHO8 promoter requires the SAGA histone acetyltransferase complex. We report here that SAGA is necessary and sufficient to establish an activator-dependent hyperacetylation peak over the PHO8 promoter that is restricted to those nucleosomes that are remodeled upon activation. This local hyperacetylated state is observed upon activation in the absence of the SWI/SNF complex when the remodeling process is frozen subsequent to activator binding. Hyperacetylation is lost, however, if remodeling is permitted to go to completion. Thus, a transient histone hyperacetylation signal is shown to be a prerequisite for, and determinant of, the domain of nucleosome remodeling in vivo.  相似文献   

16.
Hill DA  Imbalzano AN 《Biochemistry》2000,39(38):11649-11656
The physical structure and the compact nature of the eukaryotic genome present a functional barrier for any cellular process that requires access to the DNA. The linker histone H1 is intrinsically involved in both the determination of and the stability of higher order chromatin structure. Because histone H1 plays a pivotal role in the structure of chromatin, we investigated the effect of histone H1 on the nucleosome remodeling activity of human SWI/SNF, an ATP-dependent chromatin remodeling complex. The results from both DNase I digestion and restriction endonuclease accessibility assays indicate that the presence of H1 partially inhibits the nucleosome remodeling activity of hSWI/SNF. Neither H1 bound to the nucleosome nor free H1 affected the ATPase activity of hSWI/SNF, suggesting that the observed inhibition of hSWI/SNF nucleosome remodeling activity depends on the structure formed by the addition of H1 to nucleosomes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号