首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrostatic pulmonary edema is a common complication of congestive heart failure, resulting in substantial morbidity and mortality. Keratinocyte growth factor (KGF) is a mitogen for type II alveolar epithelial and microvascular cells. We utilized the isolated perfused rat lung model to produce hydrostatic pulmonary edema by varying the left atrial and pulmonary capillary pressure. Pretreatment with KGF attenuated hydrostatic edema formation. This was demonstrated by lower wet-to-dry lung weight ratios, histological evidence of less alveolar edema formation, and reduced alveolar accumulation of intravascularly administered FITC-labeled large-molecular-weight dextran in rats pretreated with KGF. Thus KGF attenuates injury in this ex vivo model of hydrostatic pulmonary edema via mechanisms that prevent increases in alveolar-capillary permeability.  相似文献   

2.
Aspiration is a devastating complication during decontamination procedure in poisoning patients. We have investigated whether S-methylisothiourea protects different pulmonary aspiration gastrointestinal decontamination agent-induced lung injury in rats. Forty-two male Sprague-Dawley rats were assigned to one of six groups (n = 7): normal saline, activated charcoal, polyethylene glycol, normal saline + S-methylisothiourea treated activated charcoal + S-methylisothiourea treated and polyethylene glycol + S-methylisothiourea treated. Normal saline, activated aharcoal and polyethylene glycol were instilled into the lungs. The rats received S-methylisothiourea i.p twice daily for 7 days. Serum surfactant protein D, oxidative stress products and inducible nitric oxide synthase expression in the lung were investigated. The aspiration of activated charcoal significantly increased all histopathological scores (P < 0.01). Only peribronchial inflammatory cell infiltration, alveolar edema, and alveolar histiocytes were increased in the polyethylene glycol groups as compared to the normal saline group (P < 0.05). Pulmonary aspiration increased serum malondialdehyde (P < 0.001), and surfactant protein D (P < 0.05) levels and decreased serum superoxide dismutase levels (P < 0.05). S-methylisothiourea treatment decreased all histopathological scores in the activated charcoal treated S-methylisothiourea group (P < 0.01) and only decreased alveolar edema and alveolar histiocytes in the polyethylene glycol-treated S-methylisothiourea group (P < 0.05). S-methylisothiourea treatment reduced elevated oxidative factors, inducible nitric oxide synthase activity and serum surfactant protein D levels. Our findings showed that S-methylisothiourea may be a protective drug against Activated Charcoal and Polyethylene Glycol-induced lung injury.  相似文献   

3.
Pulmonary capillaries recruit when microvascular pressure is raised. The details of the relationship between recruitment and pressure, however, are controversial. There are data supporting 1). gradual homogeneous recruitment, 2). sudden and complete recruitment, and 3). heterogeneous recruitment. The present study was designed to determine whether alveolar capillary networks recruit in a variety of ways or whether one model predominates. In isolated, pump-perfused canine lung lobes, fields of six neighboring alveoli were recorded with video microscopy as pulmonary venous pressure was raised from 0 to 40 mmHg in 5-mmHg increments. The largest group of alveoli (42%) recruited gradually. Another group (33%) recruited suddenly (sheet flow). Half of the neighborhoods had at least one alveolus that paradoxically derecruited when pressure was increased, even though neighboring alveoli continued to recruit capillaries. At pulmonary venous pressures of 40 mmHg, 86% of the alveolar-capillary networks were not fully recruited. We conclude that the pattern of recruitment among neighboring alveoli is complex, is not homogeneous, and may not reach full recruitment, even under extreme pressures.  相似文献   

4.
The beta2-adrenergic receptors (beta2AR) play an important role in lung fluid regulation. Previous research has suggested that subjects homozygous for arginine at amino acid 16 of the beta2AR (Arg16) may have attenuated receptor function relative to subjects homozygous for glycine at the same amino acid (Gly16). We sought to determine if the Arg16Gly polymorphism of the beta2AR influenced lung fluid balance in response to rapid saline infusion. We hypothesized that subjects homozygous for Arg at amino acid 16 (n=14) would have greater lung fluid accumulation compared with those homozygous for Gly (n=15) following a rapid intravenous infusion of isotonic saline (30 ml/kg over 17 min). Changes in lung fluid were determined using measures of lung density and tissue volume (computerized tomography imaging) and measures of pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (DM, determined from the simultaneous assessment of the diffusing capacities of the lungs for carbon monoxide and nitric oxide). The saline infusion resulted in elevated catecholamines in both genotype groups (Arg16 283+/-117% vs. Gly16 252+/-118%, P>0.05). The Arg16 group had a larger decrease in DM and increase in lung tissue volume and lung water after saline infusion relative to the Gly16 group (DM -13+/-14 vs. 0+/-26%, P<0.05; lung tissue volume 13+/-11 vs. 3+/-11% and lung water +90+/-66 vs. +48+/-144 ml, P=0.10, P<0.05, for Arg vs. Gly16, respectively, means+/-SD). These data suggest that subjects homozygous for Arg at amino acid 16 of the beta2AR have a greater susceptibility for lung fluid accumulation relative to subjects homozygous for Gly at this position.  相似文献   

5.
To determine whether beta-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH(2)O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized beta-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. beta-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h (P < 0.001). Because the rate of alveolar fluid clearance in rats is closer to human rates, we studied beta-agonist therapy in rats, with hydrostatic pulmonary edema induced by volume overload (40% body wt infusion of Ringer lactate). beta-Agonist therapy resulted in a significant decrease in excess lung water (P < 0.01) and significant improvement in arterial blood gases by 2 h (P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether beta-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.  相似文献   

6.
We have studied the effect of alveolar hypoxia on fluid filtration characteristics of the pulmonary microcirculation in an in situ left upper lobe preparation with near static flow conditions (20 ml/min). In six dogs (group 1), rate of edema formation (delta W/delta t, where W is weight and t is time) was assessed over a wide range of vascular pressures under two inspired O2 fraction (FIO2) conditions (0.95 and 0.0 with 5% CO2-balance N2 in both cases). delta W/delta t was plotted against vascular pressure, and the best-fit linear regression was obtained. There was no significant difference (paired t test) in either threshold pressure for edema formation [18.3 +/- 1.8 and 17.1 +/- 1.2 (SE) mmHg, respectively] or the slopes (0.067 +/- 0.008 and 0.073 +/- 0.017 g.min-1. mmHg-1.100g-1, respectively). In another seven dogs (group 2), delta W/delta t was obtained at a constant vascular pressure of 40 mmHg under four FIO2 conditions (0.95, 0.21, 0.05, and 0.0, with 5% CO2-balance N2). Delta W/delta t for the four conditions averaged 0.60 +/- 0.11, 0.61 +/- 0.11, 0.61 +/- 0.10, and 0.61 +/- 0.10 (SE) g.min-1.mmHg-1.100g-1, respectively. No significant differences (ANOVA for repeated measures) were noted. We conclude that alveolar hypoxia does not alter the threshold for edema formation or delta W/delta t at a given microvascular pressure.  相似文献   

7.
To characterize the rate and regulation of alveolar fluid clearance in the uninjured human lung, pulmonary edema fluid and plasma were sampled within the first 4 h after tracheal intubation in 65 mechanically ventilated patients with severe hydrostatic pulmonary edema. Alveolar fluid clearance was calculated from the change in pulmonary edema fluid protein concentration over time. Overall, 75% of patients had intact alveolar fluid clearance (>/=3%/h). Maximal alveolar fluid clearance (>/=14%/h) was present in 38% of patients, with a mean rate of 25 +/- 12%/h. Hemodynamic factors (including pulmonary arterial wedge pressure and left ventricular ejection fraction) and plasma epinephrine levels did not correlate with impaired or intact alveolar fluid clearance. Impaired alveolar fluid clearance was associated with a lower arterial pH and a higher Simplified Acute Physiology Score II. These factors may be markers of systemic hypoperfusion, which has been reported to impair alveolar fluid clearance by oxidant-mediated mechanisms. Finally, intact alveolar fluid clearance was associated with a greater improvement in oxygenation at 24 h along with a trend toward shorter duration of mechanical ventilation and an 18% lower hospital mortality. In summary, alveolar fluid clearance in humans may be rapid in the absence of alveolar epithelial injury. Catecholamine-independent factors are important in the regulation of alveolar fluid clearance in patients with severe hydrostatic pulmonary edema.  相似文献   

8.
High surface tension pulmonary edema induced by detergent aerosol   总被引:2,自引:0,他引:2  
The effect of the detergent dioctyl sodium sulfosuccinate on pulmonary extravascular water volume (PEWV) was studied in adult anesthetized mongrel dogs. The detergent was dissolved as a 1% solution in a vehicle of equal volumes of 95% ethanol and normal saline and administered by ultrasonic nebulizer attached to the inspiratory tubing of a piston ventilator. Two hours following detergent aerosol PEWV measured gravimetrically was increased compared with either animals receiving no aerosol or those receiving an aerosol of vehicle alone. Loss of surfactant activity and increased alveolar surface tension were demonstrated by Wilhelmy balance studies of minced lung extracts, by a fall in static compliance, and by evidence of atelectasis and instability noted by gross observation and by in vivo microscopy. No significant changes in colloid oncotic pressure or pulmonary microvascular hydrostatic pressure were observed. These data suggest that pulmonary edema can be induced by increased alveolar surface tension and support the concept that one of the major roles of pulmonary surfactant is to prevent pulmonary edema.  相似文献   

9.
We have studied the effects of aerosolized substance P (SP) in guinea pigs with reference to lung resistance and dynamic compliance changes and their recovery after hyperinflation. In addition, we have examined the concomitant formation of airway microvascular leakage and lung edema. Increasing breaths of SP (1.5 mg/ml, 1.1 mM), methacholine (0.15 mg/ml, 0.76 mM), or 0.9% saline were administered to tracheostomized and mechanically ventilated guinea pigs. Lung resistance (RL) increased dose dependently with a maximum effect of 963 +/- 85% of baseline values (mean +/- SE) after SP (60 breaths) and 1,388 +/- 357% after methacholine (60 breaths). After repeated hyperinflations, methacholine-treated animals returned to baseline, but after SP, mean RL was still raised (292 +/- 37%; P less than 0.005). Airway microvascular leakage, measured by extravasation of Evans Blue dye, occurred in the brain bronchi and intrapulmonary airways after SP but not after methacholine. There was a significant correlation between RL after hyperinflation and Evans Blue dye extravasation in intrapulmonary airways (distal: r = 0.89, P less than 0.005; proximal: r = 0.85, P less than 0.01). Examination of frozen sections for peribronchial and perivascular cuffs of edema and for alveolar flooding showed significant degrees of pulmonary edema for animals treated with SP compared with those treated with methacholine or saline. We conclude that the inability of hyperinflation to fully reverse changes in RL after SP may be due to the formation of both airway and pulmonary edema, which may also contribute to the deterioration in RL.  相似文献   

10.
Recent permeability studies comparing endothelial cell phenotypes derived from alveolar and extra-alveolar vessels have significant implications for interpreting the mechanisms of fluid homeostasis in the intact lung. These studies indicate that confluent monolayers of rat pulmonary microvascular endothelial cells had a hydraulic conductance (L(p)) that was only 5% and a transendothelial flux rate for 72-kDa dextran only 9% of values determined for rat pulmonary artery endothelial cell monolayers. On the basis of previous studies partitioning the filtration coefficients between alveolar and extra-alveolar vascular segments in rat lungs and previous studies of lymph albumin fluxes and permeability, the contribution of the alveolar capillary segment to total albumin flux in lymph was estimated to be less than 10%. In addition, the Starling safety factors against the edema calculated for the alveolar capillaries are quite different from those estimated for whole lung. Estimates of the edema safety factor due to increased filtration across the alveolar capillary wall based on the low L(p) indicate it is quantitatively the greatest safety factor, although it would be a minor safety factor for extra-alveolar vessels. Also, a markedly higher effective protein osmotic absorptive force for plasma proteins must occur in the capillaries relative to extra-alveolar vessels. The lower L(p) for alveolar capillaries also has implications for the sequence of hydrostatic edema formation, and it also may have a role in preventing exercise-induced alveolar flooding.  相似文献   

11.
The aspiration of gastric acid causes pulmonary edema and hypoxemia. One approach to the management of this syndrome is to raise cardiac output (Qt) and O2 delivery (QO2) to ensure tissue oxygenation (VO2) at the risk of increasing the edema. Another approach reduces the edema by reducing pulmonary microvascular pressure (Pmv) at the risk of reducing QO2 and VO2. We compared these approaches in 24 anesthetized, ventilated dogs with pulmonary wedge pressure (Ppw), a clinical approximation of Pmv, of 12.5 mmHg. Before and again 1 h after endobronchial instillation of 0.1 N HCl, we measured Qt, QO2, VO2, venous admixture, and in vivo extravascular lung liquid. The dogs were then randomly divided into four equal groups: 1) 12.5 mmHg Ppw, high Qt; 2) 7.5 mmHg Ppw, intermediate Qt; 3) 4.5 mmHg Ppw, low Qt; and 4) 4.5 mmHg Ppw plus dopamine, intermediate Qt. Measured values were followed for 4 more h, after which the lungs were excised to compare wet weight-to-body weight ratios (W/B). When plasmapheresis reduced Ppw at 1 h, edema did not increase further and W/B of groups 2 (21 +/- 3), 3 (18 +/- 3), and 4 (22 +/- 3) were significantly less than in group 1 (27 +/- 3) (P less than 0.001). Although Qt decreased with Ppw, increased hematocrit and reduced venous admixture maintained QO2 in group 2 but not in group 3. In group 4 an intermediate Qt maintained QO2 even at 4.5 mmHg Ppw but edema increased to the group 2 level presumably because Pmv rose with Qt on dopamine. VO2 remained constant over time in each group. These data demonstrate that canine HCl-induced pulmonary edema, measured in vivo or gravimetrically, is very sensitive to reductions in Pmv. Moreover, the lowest Pmv (and QO2) was well tolerated because an O2 supply dependency of VO2 was not observed.  相似文献   

12.
Most patients with acute lung injury (ALI) have reduced alveolar fluid clearance that has been associated with higher mortality. Several mechanisms may contribute to the decrease in alveolar fluid clearance. In this study, we tested the hypothesis that pulmonary edema fluid from patients with ALI might reduce the expression of ion transport genes responsible for vectorial fluid transport in primary cultures of human alveolar epithelial type II cells. Following exposure to ALI pulmonary edema fluid, the gene copy number for the major sodium and chloride transport genes decreased. By Western blot analyses, protein levels of alphaENaC, alpha1Na,K-ATPase, and cystic fibrosis transmembrane conductance regulator decreased as well. In contrast, the gene copy number for several inflammatory cytokines increased markedly. Functional studies demonstrated that net vectorial fluid transport was reduced for human alveolar type II cells exposed to ALI pulmonary edema fluid compared with plasma (0.02 +/- 0.05 versus 1.31 +/- 0.56 microl/cm2/h, p < 0.02). An inhibitor of p38 MAPK phosphorylation (SB202190) partially reversed the effects of the edema fluid on net fluid transport as well as gene and protein expression of the main ion transporters. In summary, alveolar edema fluid from patients with ALI induced a significant reduction in sodium and chloride transport genes and proteins in human alveolar epithelial type II cells, effects that were associated with a decrease in net vectorial fluid transport across human alveolar type II cell monolayers.  相似文献   

13.
Microvascular pathophysiology associated with type 2 diabetes mellitus (T2DM) contributes to several aspects of the morbidity associated with the disease. We quantified the contribution of nitric oxide (NO) to the cutaneous vasodilator response to nonpainful local warming in subjects with T2DM (average duration of diabetes mellitus 7 +/- 1 yr) and in age-matched control subjects. We measured skin blood flow in conjunction with intradermal microdialysis of N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or vehicle during 35 min of local warming to 42 degrees C. Microdialysis of sodium nitroprusside (SNP) was used for assessment of maximum cutaneous vascular conductance (CVC). Resting CVC was higher in T2DM subjects at vehicle sites (T2DM: 19 +/- 2 vs. control: 11 +/- 3%maxCVC; P < 0.05); this difference was abolished by l-NAME (T2DM: 10 +/- 1 vs. control: 8 +/- 1%maxCVC; P > 0.05). The relative contribution of NO to the vasodilator response to local warming was not different between groups (T2DM: 46 +/- 4 vs. control: 44 +/- 6%maxCVC; P > 0.05). However, absolute CVC during local warming was approximately 25% lower in T2DM subjects (T2DM: 1.79 +/- 0.15 AU/mmHg; controls: 2.42 +/- 0.20 AU/mmHg; P < 0.01), and absolute CVC during SNP was approximately 20% lower (T2DM: 1.91 +/- 0.12 vs. control: 2.38 +/- 0.13 AU/mmHg; P < 0.01). We conclude that the relative contribution of NO to vasodilation during local warming is similar between subjects with T2DM and control subjects, although T2DM was associated with a lower absolute maximum vasodilation.  相似文献   

14.
Permeability of the endothelial barrier to large molecules plays a pivotal role in the manifestation of early acute lung injury. We present a novel and sensitive technique that brings microanatomical visualization and quantification of microvascular permeability in line. White New Zealand rabbits were anesthetized and ventilated mechanically. Rabbit serum albumin (RSA) was labeled with colloidal gold particles. We quantified macromolecular leakage of gold-labeled RSA and thickening of the gas exchange distance by electron microscopy, taking into account morphology of microvessels. The control group receiving a saline solution represented a normal gas exchange barrier without extravasation of gold-labeled albumin. Infusion of lipopolysaccharide (LPS) resulted in a significant displacement of gold-labeled albumin into pulmonary cells, the lung interstitium, and even the alveolar space. Correspondingly, intravital fluorescence microscopy and digital image analysis indicated thickening of width of alveolar septa. The findings were accompanied by a deterioration of alveolo-arterial oxygen difference, whereas wet/dry ratio and albumin concentration in the bronchoalveolar lavage fluid failed to detect that early stage of pulmonary edema. Inhibition of the nuclear enzyme poly(ADP-ribose) synthetase by 3-aminobenzamide prevented LPS-induced microvascular injury. To summarize: colloidal gold particles visualized by standard electron microscopy are a new and very sensitive in vivo marker of microvascular permeability in early acute lung injury. This technique enabling detailed microanatomical and quantitative pathophysiological characterization of edema formation can form the basis for evaluating novel treatment strategies against acute lung injury.  相似文献   

15.
The rate of alveolar fluid clearance (AFC) is associated with mortality in clinical acute lung injury (ALI). Patients with ALI often develop circulatory shock, but how shock affects the rate of AFC is unknown. To determine the effect of circulatory shock on the rate of AFC in patients with ALI, the rate of net AFC was measured in 116 patients with ALI by serial sampling of pulmonary edema fluid. The primary outcome was the rate of AFC in patients with shock compared with those without shock. We also tested the effects of shock severity and bacteremia. Patients with ALI and shock (n = 86) had significantly slower rates of net AFC compared with those without shock (n = 30, P = 0.03), and AFC decreased significantly as the number of vasopressors increased. Patients with positive blood cultures (n = 21) had slower AFC compared with patients with negative blood cultures (n = 96, P = 0.023). In addition, the edema fluid-to-plasma protein ratio, an index of alveolar-capillary barrier permeability, was highest in patients requiring the most vasopressors (P < 0.05). Patients with ALI complicated by circulatory shock and bacteremia had slower rates of AFC compared with patients without shock or bacteremia. An impaired capacity to reabsorb alveolar edema fluid may contribute to high mortality among patients with sepsis-induced ALI. These findings also suggest that vasopressor use may be a marker of alveolar-capillary barrier permeability in ALI and provide justification for new therapies that enhance alveolar epithelial and endothelial barrier integrity in ALI, particularly in patients with shock.  相似文献   

16.

Background

Sepsis remains a common and serious condition with significant morbidity and mortality due to multiple organ dysfunction, especially acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Sepsis-induced ALI is characterized by injury and dysfunction of the pulmonary microvasculature and pulmonary microvascular endothelial cells (PMVEC), resulting in enhanced pulmonary microvascular sequestration and pulmonary infiltration of polymorphonuclear leukocytes (PMN) as well as disruption of the normal alveolo-capillary permeability barrier with leak of albumin-rich edema fluid into pulmonary interstitium and alveoli. The role of PMVEC death and specifically apoptosis in septic pulmonary microvascular dysfunction in vivo has not been established.

Methods

In a murine cecal ligation/perforation (CLP) model of sepsis, we quantified and correlated time-dependent changes in pulmonary microvascular Evans blue (EB)-labeled albumin permeability with (1) PMVEC death (propidium iodide [PI]-staining) by both fluorescent intravital videomicroscopy (IVVM) and histology, and (2) PMVEC apoptosis using histologic fluorescent microscopic assessment of a panel of 3 markers: cell surface phosphatidylserine (detected by Annexin V binding), caspase activation (detected by FLIVO labeling), and DNA fragmentation (TUNEL labeling).

Results

Compared to sham mice, CLP-sepsis resulted in pulmonary microvascular barrier dysfunction, quantified by increased EB-albumin leak, and PMVEC death (PI+ staining) as early as 2 h and more marked by 4 h after CLP. Septic PMVEC also exhibited increased presence of all 3 markers of apoptosis (Annexin V+, FLIVO+, TUNEL+) as early as 30 mins – 1 h after CLP-sepsis, which all similarly increased markedly until 4 h. The time-dependent changes in septic pulmonary microvascular albumin-permeability barrier dysfunction were highly correlated with PMVEC death (PI+; r = 0.976, p < 0.01) and PMVEC apoptosis (FLIVO+; r = 0.991, p < 0.01). Treatment with the pan-caspase inhibitor Q-VD prior to CLP reduced PMVEC death/apoptosis and attenuated septic pulmonary microvascular dysfunction, including both albumin-permeability barrier dysfunction and pulmonary microvascular PMN sequestration (p < 0.05). Septic PMVEC apoptosis and pulmonary microvascular dysfunction were also abrogated following CLP-sepsis in mice deficient in iNOS (Nos2−/−) or NADPH oxidase (p47phox−/− or gp91phox−/−) and in wild-type mice treated with the NADPH oxidase inhibitor, apocynin.

Conclusions

Septic murine pulmonary microvascular dysfunction in vivo is due to PMVEC death, which is mediated through caspase-dependent apoptosis and iNOS/NADPH-oxidase dependent signaling.  相似文献   

17.
Exposing rabbits for 1 h to 100% O2 at 4 atm barometric pressure markedly increases the concentration of thromboxane B2 in alveolar lavage fluid [1,809 +/- 92 vs. 99 +/- 24 (SE) pg/ml, P less than 0.001], pulmonary arterial pressure (110 +/- 17 vs. 10 +/- 1 mmHg, P less than 0.001), lung weight gain (14.6 +/- 3.7 vs. 0.6 +/- 0.4 g/20 min, P less than 0.01), and transfer rates for aerosolized 99mTc-labeled diethylenetriamine pentaacetate (500 mol wt; 40 +/- 14 vs. 3 +/- 1 x 10(-3)/min, P less than 0.01) and fluorescein isothiocyanate-labeled dextran (7,000 mol wt; 10 +/- 3 vs. 1 +/- 1 x 10(-4)/min, P less than 0.01). Pretreatment with the antioxidant butylated hydroxyanisole (BHA) entirely prevents the pulmonary hypertension and lung injury. In addition, BHA blocks the increase in alveolar thromboxane B2 caused by hyperbaric O2 (10 and 45 pg/ml lavage fluid, n = 2). Combined therapy with polyethylene glycol- (PEG) conjugated superoxide dismutase (SOD) and PEG-catalase also completely eliminates the pulmonary hypertension, pulmonary edema, and increase in transfer rate for the aerosolized compounds. In contrast, combined treatment with unconjugated SOD and catalase does not reduce the pulmonary damage. Because of the striking increase in pulmonary arterial pressure to greater than 100 mmHg, we tested the hypothesis that thromboxane causes the hypertension and thus contributes to the lung injury. Indomethacin and UK 37,248-01 (4-[2-(1H-imidazol-1-yl)-ethoxy]benzoic acid hydrochloride, an inhibitor of thromboxane synthase, completely eliminate the pulmonary hypertension and edema.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Formation of cardiogenic pulmonary edema in acute left heart failure is traditionally attributed to increased fluid filtration from pulmonary capillaries and subsequent alveolar flooding. Here, we demonstrate that hydrostatic edema formation at moderately elevated vascular pressures is predominantly caused by an inhibition of alveolar fluid reabsorption, which is mediated by endothelial-derived nitric oxide (NO). In isolated rat lungs, we quantified fluid fluxes into and out of the alveolar space and endothelial NO production by a two-compartmental double-indicator dilution technique and in situ fluorescence imaging, respectively. Elevation of hydrostatic pressure induced Ca(2+)-dependent endothelial NO production and caused a net fluid shift into the alveolar space, which was predominantly attributable to impaired fluid reabsorption. Inhibition of NO production or soluble guanylate cyclase reconstituted alveolar fluid reabsorption, whereas fluid clearance was blocked by exogenous NO donors or cGMP analogs. In isolated mouse lungs, hydrostatic edema formation was attenuated by NO synthase inhibition. Similarly, edema formation was decreased in isolated mouse lungs of endothelial NO synthase-deficient mice. Chronic heart failure results in endothelial dysfunction and preservation of alveolar fluid reabsorption. These findings identify impaired alveolar fluid clearance as an important mechanism in the pathogenesis of hydrostatic lung edema. This effect is mediated by endothelial-derived NO acting as an intercompartmental signaling molecule at the alveolo-capillary barrier.  相似文献   

19.
Chronic heart failure (CHF) may impair lung gas diffusion, an effect that contributes to exercise limitation. We investigated whether diffusion improvement is a mechanism whereby physical training increases aerobic efficiency in CHF. Patients with CHF (n = 16) were trained (40 min of stationary cycling, 4 times/wk) for 8 wk; similar sedentary patients (n = 15) were used as controls. Training increased lung diffusion (DlCO, +25%), alveolar-capillary conductance (DM, +15%), pulmonary capillary blood volume (VC, +10%), peak exercise O2 uptake (peak VO2, +13%), and VO2 at anaerobic threshold (AT, +20%) and decreased the slope of exercise ventilation to CO2 output (VE/VCO2, -14%). It also improved the flow-mediated brachial artery dilation (BAD, from 4.8 +/- 0.4 to 8.2 +/- 0.4%). These changes were significant compared with baseline and controls. Hemodynamics were obtained in the last 10 patients in each group. Training did not affect hemodynamics at rest and enhanced the increase of cardiac output (+226 vs. +187%) and stroke volume (+59 vs. +49%) and the decrease of pulmonary arteriolar resistance (-28 vs. -13%) at peak exercise. Hemodynamics were unchanged in controls after 8 wk. Increases in DlCO and DM correlated with increases in peak VO2 (r = 0.58, P = 0.019 and r = 0.51, P = 0.04, respectively) and in BAD (r = 0.57, P < 0.021 and r = 0.50, P = 0.04, respectively). After detraining (8 wk), DlCO, DM, VC, peak VO2, VO2 at AT, VE/VCO2 slope, cardiac output, stroke volume, pulmonary arteriolar resistance at peak exercise, and BAD reverted to levels similar to baseline and to levels similar to controls. Results document, for the first time, that training improves DlCO in CHF, and this effect may contribute to enhancement of exercise performance.  相似文献   

20.
Hypoxia and hypoxic exercise increase pulmonary arterial pressure, cause pulmonary capillary recruitment, and may influence the ability of the lungs to regulate fluid. To examine the influence of hypoxia, alone and combined with exercise, on lung fluid balance, we studied 25 healthy subjects after 17-h exposure to 12.5% inspired oxygen (barometric pressure = 732 mmHg) and sequentially after exercise to exhaustion on a cycle ergometer with 12.5% inspired oxygen. We also studied subjects after a rapid saline infusion (30 ml/kg over 15 min) to demonstrate the sensitivity of our techniques to detect changes in lung water. Pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (D(M)) were determined by measuring the diffusing capacity of the lungs for carbon monoxide and nitric oxide. Lung tissue volume and density were assessed using computed tomography. Lung water was estimated by subtracting measures of Vc from computed tomography lung tissue volume. Pulmonary function [forced vital capacity (FVC), forced expiratory volume after 1 s (FEV(1)), and forced expiratory flow at 50% of vital capacity (FEF(50))] was also assessed. Saline infusion caused an increase in Vc (42%), tissue volume (9%), and lung water (11%), and a decrease in D(M) (11%) and pulmonary function (FVC = -12 +/- 9%, FEV(1) = -17 +/- 10%, FEF(50) = -20 +/- 13%). Hypoxia and hypoxic exercise resulted in increases in Vc (43 +/- 19 and 51 +/- 16%), D(M) (7 +/- 4 and 19 +/- 6%), and pulmonary function (FVC = 9 +/- 6 and 4 +/- 3%, FEV(1) = 5 +/- 2 and 4 +/- 3%, FEF(50) = 4 +/- 2 and 12 +/- 5%) and decreases in lung density and lung water (-84 +/- 24 and -103 +/- 20 ml vs. baseline). These data suggest that 17 h of hypoxic exposure at rest or with exercise resulted in a decrease in lung water in healthy humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号