首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ginsenosides have been shown to stimulate nitric oxide (NO) production in aortic endothelial cells. However, the signaling pathways involved have not been well studied in human aortic endothelial cells. The present study was designed to examine whether purified ginsenoside Rb1, a major active component of ginseng could actually induce NO production and to clarify the signaling pathway in human aortic endothelial cells. NO production was rapidly increased by Rb1. The rapid increase in NO production was abrogated by treatment with nitric oxide synthetase inhibitor, L-NAME. Rb1 stimulated rapid phosphorylation of Akt (Ser473), ERK1/2 (Thr202/Thr204) and eNOS (Ser1177). Rapid phosphorylation of eNOS (Ser1177) was prevented by SH-5, an Akt inhibitor or wortmannin, PI3-kinase inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. Interestingly, NO production and eNOS phosphorylation at Ser1177 by Rb1 were abolished by androgen receptor antagonist, nilutamide. The results suggest that PI3kinase/Akt and MEK/ERK pathways and androgen receptor are involved in the regulation of acute eNOS activation by Rb1 in human aortic endothelial cells.  相似文献   

2.
Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration. The protein kinase Akt activates the endothelial NO synthase (eNOS) by phosphorylation of Ser-1177. Therefore, we investigated the contribution of Akt-mediated eNOS phosphorylation to VEGF-induced EC migration. Inhibition of NO synthase or overexpression of a dominant negative Akt abrogated VEGF-induced cell migration. In contrast, overexpression of constitutively active Akt was sufficient to induce cell migration. Moreover, transfection of an Akt site phospho-mimetic eNOS (S1177D) potently stimulated EC migration, whereas a non-phosphorylatable mutant (S1177A) inhibited VEGF-induced EC migration. Our data indicate that eNOS activation via phosphorylation of Ser-1177 by Akt is necessary and sufficient for VEGF-mediated EC migration.  相似文献   

3.
Interleukin 6 (IL-6) is an independent predictor of type 2 diabetes and cardiovascular disease and is correlated with insulin resistance. Insulin stimulates nitric oxide (NO) production through the IRS-1/PI3-kinase/Akt/eNOS pathway (where IRS-1 is insulin receptor substrate 1, PI3-kinase is phosphatidylinositol 3-kinase, and eNOS is endothelial NO synthase). We asked if IL-6 affects insulin vasodilator action both in human umbilical vein endothelial cells (HUVEC) and in the aortas of C57BL/6J mice and whether this inhibitory effect was caused by increased Ser phosphorylation of IRS-1. We observed that IL-6 increased IRS-1 phosphorylation at Ser(312) and Ser(616); these effects were paralleled by increased Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and reversed by JNK and ERK1/2 inhibition. In addition, IL-6 treatment resulted in impaired IRS-1 phosphorylation at Tyr(612), a site essential for engaging PI3-kinase. Furthermore, IL-6 treatment reduced insulin-stimulated phosphorylation of eNOS at the stimulatory Ser(1177) site and impaired insulin-stimulated eNOS dephosphorylation at the inhibitory Thr(495) site. Insulin-stimulated eNOS activation and NO production were also inhibited by IL-6; these effects were reversed by inhibition of JNK and ERK1/2. Treatment of C57BL/6J mice with IL-6 resulted in impaired insulin-dependent activation of the Akt/eNOS pathway in the aorta as a result of JNK and ERK1/2 activation. Our data suggest that IL-6 impairs the vasodilator effects of insulin that are mediated by the IRS-1/PI3-kinase/Akt/eNOS pathway through activation of JNK and ERK1/2.  相似文献   

4.
Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.  相似文献   

5.
Recent studies have indicated that insulin activates endothelial nitric-oxide synthase (eNOS) by protein kinase B (PKB)-mediated phosphorylation at Ser1177 in endothelial cells. Because hyperglycemia contributes to endothelial dysfunction and decreased NO availability in types 1 and 2 diabetes mellitus, we have studied the effects of high glucose (25 mM, 48 h) on insulin signaling pathways that regulate NO production in human aortic endothelial cells. High glucose inhibited insulin-stimulated NO synthesis but was without effect on NO synthesis stimulated by increasing intracellular Ca2+ concentration. This was accompanied by reduced expression of IRS-2 and attenuated insulin-stimulated recruitment of PI3K to IRS-1 and IRS-2, yet insulin-stimulated PKB activity and phosphorylation of eNOS at Ser1177 were unaffected. Inhibition of insulin-stimulated NO synthesis by high glucose was unaffected by an inhibitor of PKC. Furthermore, high glucose down-regulated the expression of CAP and Cbl, and insulin-stimulated Cbl phosphorylation, components of an insulin signaling cascade previously characterized in adipocytes. These data suggest that high glucose specifically inhibits insulin-stimulated NO synthesis and down-regulates some aspects of insulin signaling, including the CAP-Cbl signaling pathway, yet this is not a result of reduced PKB-mediated eNOS phosphorylation at Ser1177. Therefore, we propose that phosphorylation of eNOS at Ser1177 is not sufficient to stimulate NO production in cells cultured at 25 mM glucose.  相似文献   

6.
The Akt kinase signals directly to endothelial nitric oxide synthase.   总被引:19,自引:0,他引:19  
Endothelial nitric oxide synthase (eNOS) is an important modulator of angiogenesis and vascular tone [1]. It is stimulated by treatment of endothelial cells in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent fashion by insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) [2] [3] and is activated by phosphorylation at Ser1177 in the sequence RIRTQS(1177)F (in the single-letter amino acid code) [4]. The protein kinase Akt is an important downstream target of PI 3-kinase [5] [6], regulating VEGF-stimulated endothelial cell survival [7]. Akt phosphorylates substrates within a defined motif [8], which is present in the sequence surrounding Ser1177 in eNOS. Both Akt [5] [6] and eNOS [9] are localized to, and activated at, the plasma membrane. We found that purified Akt phosphorylated cardiac eNOS at Ser1177, resulting in activation of eNOS. Phosphorylation at this site was stimulated by treatment of bovine aortic endothelial cells (BAECs) with VEGF or IGF-1, and Akt was activated in parallel. Preincubation with wortmannin, an inhibitor of Akt signalling, reduced VEGF- or IGF-1-induced Akt activity and eNOS phosphorylation. Akt was detected in immunoprecipitates of eNOS from BAECs, and eNOS in immunoprecipitates of Akt, indicating that the two enzymes associate in vivo. It is thus apparent that Akt directly activates eNOS in endothelial cells. These results strongly suggest that Akt has an important role in the regulation of normal angiogenesis and raise the possibility that the enhanced activity of this kinase that occurs in carcinomas may contribute to tumor vascularization and survival.  相似文献   

7.
Icariin, a flavonoid isolated from Epimedii herba, stimulated phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177, Akt (Ser473) and ERK1/2 (Thr202/Tyr204). The icariin-induced eNOS phosphorylation was abolished by an androgen receptor (AR) antagonist, nilutamide in human umbilical vein endothelial cells (HUVECs). Furthermore, it was also reduced in the cells transfected with small interfering RNA in which the expression of AR was broken down. The icariin-induced eNOS phosphorylation was inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. These data suggest that icariin stimulates release of NO by AR-dependent activation of eNOS in HUVECs. PI3K/Akt and MAPK-ERK kinase (MEK)/ERK1/2 pathways were involved in the phosphorylation of eNOS by icariin.  相似文献   

8.
Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells. We therefore determined whether AMPK mediates VEGF-stimulated NO synthesis in endothelial cells. VEGF caused a rapid, dose-dependent stimulation of AMPK activity, with a concomitant increase in phosphorylation of eNOS at Ser1177. Infection of endothelial cells with an adenovirus expressing a dominant negative mutant AMPK partially inhibited both VEGF-stimulated eNOS Ser1177 phosphorylation and NO production. VEGF-stimulated AMPK activity was completely inhibited by the Ca(2+)/calmodulin-dependent protein kinase kinase inhibitor, STO-609. Stimulation of AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase represents a novel signalling mechanism utilised by VEGF in endothelial cells that contributes to eNOS phosphorylation and NO production.  相似文献   

9.
Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser1177), but not that of eNOS-Thr495 or eNOS-Ser114. The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser1177 phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser473 and S6K-Thr389. However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser1177 phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser1177 phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3–Akt–S6K–eNOS-Ser1177 phosphorylation, suggesting an important role for CCN1 in vasodilation.  相似文献   

10.
11.
Adiponectin is secreted by adipose cells and mimics many metabolic actions of insulin. However, mechanisms by which adiponectin acts are poorly understood. The vascular action of insulin to stimulate endothelial production of nitric oxide (NO), leading to vasodilation and increased blood flow is an important component of insulin-stimulated whole body glucose utilization. Therefore, we hypothesized that adiponectin may also stimulate production of NO in endothelium. Bovine aortic endothelial cells in primary culture loaded with the NO-specific fluorescent dye 4,5-diaminofluorescein diacetate (DAF-2 DA) were treated with lysophosphatidic acid (LPA) (a calcium-releasing agonist) or adiponectin (10 microg/ml bacterially produced full-length adiponectin). LPA treatment increased production of NO by approximately 4-fold. Interestingly, adiponectin treatment significantly increased production of NO by approximately 3-fold. Preincubation of cells with wortmannin (phosphatidylinositol 3-kinase inhibitor) blocked only adiponectin- but not LPA-mediated production of NO. Using phospho-specific antibodies, we observed that either adiponectin or insulin treatment (but not LPA treatment) caused phosphorylation of both Akt at Ser473 and endothelial nitric-oxide synthase (eNOS) at Ser1179 that was inhibitable by wortmannin. We next transfected bovine aortic endothelial cells with dominant-inhibitory mutants of Akt (Akt-AAA) or AMP-activated protein kinase (AMPK) (AMPKK45R). Neither mutant affected production of NO in response to LPA treatment. Importantly, only AMPKK45R, but not Akt-AAA, caused a significant partial inhibition of NO production in response to adiponectin. Moreover, AMPK-K45R inhibited phosphorylation of eNOS at Ser1179 in response to adiponectin but not in response to insulin. We conclude that adiponectin has novel vascular actions to directly stimulate production of NO in endothelial cells using phosphatidylinositol 3-kinase-dependent pathways involving phosphorylation of eNOS at Ser1179 by AMPK. Thus, the effects of adiponectin to augment metabolic actions of insulin in vivo may be due, in part, to vasodilator actions of adiponectin.  相似文献   

12.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca(2+)-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, L-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated L-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3'-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular L-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the L-arginine transport inhibitor, L-lysine. Basal L-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated L-arginine transport remained unaltered. The increase in L-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   

13.
14.
Recent studies have indicated that endothelial nitric-oxide synthase (eNOS) is regulated by reversible phosphorylation in intact endothelial cells. AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and activate eNOS at Ser-1177 in vitro, yet the function of AMPK in endothelium is poorly characterized. We therefore determined whether activation of AMPK with 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) stimulated NO production in human aortic endothelial cells. AICAR caused the time- and dose-dependent stimulation of AMPK activity, with a concomitant increase in eNOS Ser-1177 phosphorylation and NO production. AMPK was associated with immunoprecipitates of eNOS, yet this was unaffected by increasing concentrations of AICAR. AICAR also caused the time- and dose-dependent stimulation of protein kinase B phosphorylation. To confirm that the effects of AICAR were indeed mediated by AMPK, we utilized adenovirus-mediated expression of a dominant negative AMPK mutant. Expression of dominant negative AMPK attenuated AICAR-stimulated AMPK activity, eNOS Ser-1177 phosphorylation and NO production and was without effect on AICAR-stimulated protein kinase B Ser-473 phosphorylation or NO production stimulated by insulin or A23187. These data suggest that AICAR-stimulated NO production is mediated by AMPK as a consequence of increased Ser-1177 phosphorylation of eNOS. We propose that stimuli that result in the acute activation of AMPK activity in endothelial cells stimulate NO production, at least in part due to phosphorylation and activation of eNOS. Regulation of endothelial AMPK therefore provides an additional mechanism by which local vascular tone may be controlled.  相似文献   

15.
Consumption of tea (Camellia sinensis) improves vascular function and is linked to lowering the risk of cardiovascular disease. Endothelial nitric oxide is the key regulator of vascular functions in endothelium. In this study, we establish that l-theanine, a non-protein amino-acid found in tea, promotes nitric oxide (NO) production in endothelial cells. l-theanine potentiated NO production in endothelial cells was evaluated using Griess reaction, NO sensitive electrode and a NO specific fluorescent probe (4-amino-5-methylamino-2',7'-difluororescein diacetate). l-Theanine induced NO production was partially attenuated in presence of l-NAME or l-NIO and completely abolished using eNOS siRNA. eNOS activation was Ca2 + and Akt independent, as assessed by fluo-4AM and immunoblotting experiments, respectively and was associated with phosphorylation of eNOS Ser 1177. eNOS phosphorylation was inhibited in the presence of ERK1/2 inhibitor, PD-98059 and partially inhibited by PI3K inhibitor, LY-294002 and Wortmanin suggesting PI3K-ERK1/2 dependent pathway. Increased NO production was associated with vasodilation in ex ovo (chorioallantoic membrane) model. These results demonstrated that l-theanine administration in vitro activated ERK/eNOS resulting in enhanced NO production and thereby vasodilation in the artery. The results of our experiments are suggestive of l-theanine mediated vascular health benefits of tea.  相似文献   

16.
Epidemiological studies suggest that tea catechins may reduce the risk of cardiovascular disease, but the mechanisms of benefit have not been determined. The objective of the present study was to investigate the effects of epigallocatechin-3-gallate (EGCG), the major constituent of green tea, on vasorelaxation and on eNOS expression and activity in endothelial cells. EGCG (1-50 microm) induced dose-dependent vasodilation in rat aortic rings. Vasodilation was abolished by pretreatment with Ng-nitro L-arginine methyl ester. In bovine aortic endothelial cells, EGCG increased endothelial nitric oxide (eNOS) activity dose-dependently after 15 min. Treatment with EGCG induced a sustained activation of Akt, ERK1/2, and eNOS Ser1179 phosphorylation. Inhibition of extracellular signal-regulated kinase (ERK)1/2 had no influence on eNOS activity or Ser1179 phosphorylation. Simultaneous treatment of cells with selective inhibitors for cAMP-dependent protein kinase (PKA) and Akt completely prevented the increase in eNOS activity by EGCG after 15 min, indicating that both kinases act in concert. Specific phosphatidylinositol-3-OH-kinase inhibitors yielded identical results. Akt inhibition prevented eNOS Ser1179 phosphorylation, whereas inhibition of PKA did not influence Akt and eNOS Ser1179 phosphorylation. Pretreatment of endothelial cells with EGCG for 4 h markedly enhanced the increase in eNOS activity stimulated by Ca-ionomycin, suggesting that Akt accounts for prolonged eNOS activation. Treatment of cells for 72 h with EGCG did not change eNOS protein levels. Our results indicate that EGCG-induced endothelium-dependent vasodilation is primarily based on rapid activation of eNOS by a phosphatidylinositol 3-kinase-, PKA-, and Akt-dependent increase in eNOS activity, independently of an altered eNOS protein content.  相似文献   

17.
The present study addressed whether chronic hypoxia is associated with reduced nitric oxide (NO) release due to decreased activation of endothelial NO synthase (eNOS). Primary cultures of endothelial cells from human umbilical veins (HUVECs) were used and exposed to different oxygen levels for 24 h, after which NO release, intracellular calcium, and eNOS activity and phosphorylation were measured after 24 h. Direct measurements using a NO microsensor showed that in contrast to 1-h exposure to 5% and 1% oxygen (acute hypoxia), histamine-evoked (10 microM) NO release from endothelial cells exposed to 5% and 1% oxygen for 24 h (chronic hypoxia) was reduced by, respectively, 58% and 40%. Furthermore, chronic hypoxia also lowered the amount and activity of eNOS enzyme. The decrease in activity could be accounted for by reduced intracellular calcium and altered eNOS phosphorylation. eNOS Ser(1177) and eNOS Thr(495) phosphorylations were reduced and increased, respectively, consistent with lowered enzyme activity. Akt kinase, which can phosphorylate eNOS Ser(1177), was also decreased by hypoxia, regarding both total protein content and the phosphorylated (active) form. Moreover, the protein content of beta- actin, which is known to influence the activity of eNOS, was almost halved by hypoxia, further supporting the fall in eNOS activity. In conclusion, chronic hypoxia in HUVECs reduces histamine-induced NO release as well as eNOS expression and activity. The decreased activity is most likely due to changed eNOS phosphorylation, which is supported by decreases in Akt expression and phosphorylation. By reducing NO, chronic hypoxia may accentuate endothelial dysfunction in cardiovascular disease.  相似文献   

18.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca2+-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, l-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated l-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3′-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular l-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the l-arginine transport inhibitor, l-lysine. Basal l-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated l-arginine transport remained unaltered. The increase in l-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   

19.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

20.
Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells   总被引:1,自引:0,他引:1  
Endothelial nitric oxide synthase (eNOS) produces nitric oxide (NO), which is involved in various physiological functions of the cardiovascular system. eNOS is activated by dephosphorylation at Thr495 and phosphorylation at Ser1177. Inhibition of Rho-kinase, an effector of the small GTPase RhoA, leads to activation of Akt/PKB, which phosphorylates eNOS at Ser1177 and thereby promotes NO production. However, little is known about the effects of Rho-kinase on phosphorylation of Thr495. We here found that the constitutively active form of Rho-kinase phosphorylated eNOS at Thr495 in vitro. Expression of the constitutively active form of RhoA or Rho-kinase increased this phosphorylation in COS-7 cells. Addition of thrombin to cultured human umbilical vein endothelial cells induced phosphorylation of eNOS at Thr495. Treatment with Y27632, a Rho-kinase inhibitor, suppressed thrombin-induced phosphorylation at Thr495. These results indicate that Rho-kinase can directly phosphorylate eNOS at Thr495 to suppress NO production in endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号