首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chronic sympathetic denervation entails subsensitivity to alpha(2)-adrenoceptor agonists and supersensitivity to kappa- and mu-opioid receptor agonists modulating cholinergic neurons in the guinea pig colon. A possible role for signal transduction G proteins in contributing to development of these sensitivity changes was investigated. Pertussis toxin (PTX), a blocker of the G(i/o)-type family of G proteins significantly reduced the inhibitory effects of UK14,304 (alpha(2)-adrenoceptor agonist), U69593 (kappa-opioid receptor agonist) and DAMGO (mu-opioid receptor agonist) on acetylcholine (ACh) overflow in preparations obtained from normal animals, but not in those obtained from sympathetically denervated animals. In this experimental condition, immunoblot analysis revealed reduced levels of G(alphao), G(alphai2), G(alphai3) and G(beta) in myenteric plexus synaptosomes. On reverse, synaptosomal levels of G(alphai1) and G(alphaz), a PTX-insensitive G-protein, increased after chronic ablation of the sympathetic pathways. These data suggest that changes in the function and expression of inhibitory G proteins coupled to alpha(2)-adrenoceptors, kappa- and mu-opioid receptors occur in the myenteric plexus of the guinea pig colon after chronic sympathetic denervation. The possibility that regulation of G proteins represents one of the biochemical mechanisms at the basis of the changes in sensitivity of enteric cholinergic neurons to alpha(2)-adrenoceptor, kappa- and mu-opioid receptor agonists is discussed.  相似文献   

2.
Previous studies have shown that alpha2A-adrenergic receptor (alpha2A-AR) retention at the basolateral surface of polarized MDCKII cells involves its third intracellular (3i loop). The present studies examining mutant alpha2A-ARs possessing short deletions of the 3i loop indicate that no single region can completely account for the accelerated surface turnover of the Delta3ialpha2A-AR, suggesting that the entire 3i loop is involved in basolateral retention. Both wild-type and Delta3i loop alpha2A-ARs are extracted from polarized Madin-Darby canine kidney (MDCK) cells with 0.2% Triton X-100 and with a similar concentration/response profile, suggesting that Triton X-100-resistant interactions of the alpha2A-AR with cytoskeletal proteins are not involved in receptor retention on the basolateral surface. The indistinguishable basolateral t(1)/(2) for either the wild-type or nonsense 3i loop alpha2A-AR suggests that the stabilizing properties of the alpha2A-AR 3i loop are not uniquely dependent on a specific sequence of amino acids. The accelerated turnover of Delta3i alpha2A-AR cannot be attributed to alteration in agonist-elicited alpha2A-AR redistribution, because alpha2A-ARs are not down-regulated in response to agonist. Taken together, the present studies show that stabilization of the alpha2A-AR on the basolateral surface of MDCKII cells involves multiple mechanisms, with the third intracellular loop playing a central role in regulating these processes.  相似文献   

3.
Opioid desensitization/tolerance mechanisms have largely focused on adaptations that occur on the level of the mu-opioid receptor (MOR) itself. These include opioid receptor phosphorylation and ensuing trafficking events. Recent research, however, has revealed additional adaptations that occur downstream from the opioid receptor, which involve covalent modification of signaling molecules and altered associations among them. These include augmented isoform-specific synthesis of adenylyl cyclase (AC) and their phosphorylation as well as augmented phosphorylation of the G(beta) subunit of G(beta gamma). The aggregate effect of these changes is to shift mu-opioid receptor-coupled signaling from predominantly G(i alpha) inhibitory to (G(i)-derived) G(beta gamma) stimulatory AC signaling. Most recently, chronic morphine has been shown to enhance the association (interaction) between MOR and G(s), which should provide an additional avenue for offsetting inhibitory MOR signaling sequelae. The unfolding complexity of chronic morphine-induced sequelae demands an evolving broader and more encompassing perspective on opioid tolerance-producing mechanisms. This should facilitate understanding tolerance within the context of physiological plasticity that is activated by chronic exposure to drugs of abuse. Additional research is required to integrate the various tolerance-producing adaptations that have been elucidated to date. Specifically, the relative contribution to opioid tolerance of identified adaptations is still unknown as is the extent to which they vary among different regions of the central nervous system.  相似文献   

4.
Peptides derived from various regions of the alpha 2A-adrenergic receptor (alpha 2A-AR) were used to study receptor-G protein interactions. Binding of the partial agonist [125I]-p-iodoclonidine and the full agonist [3H]bromoxidine (UK14,304) to membrane preparations from human platelet was potently reduced by peptides (12-14 amino acids) from the second cytoplasmic loop (A) and the C-terminal side of the third cytoplasmic loop (Q). Binding of the antagonist [3H]yohimbine was significantly less affected. Five other peptides had no significant effects on ligand binding at concentrations less than 100 microM. The IC50 values for peptides A and Q were 7 and 27 microM for [125I]-p-iodoclonidine binding at the platelet alpha 2A receptor, 15 and 71 microM for the neuroblastoma-glioma (NG108-15) alpha 2B receptor, and greater than 300 microM for yohimbine binding at both alpha 2A and alpha 2B receptors. Competition studies demonstrate that at concentrations of 100 microM, peptides A and Q reduce the affinity of bromoxidine for the platelet alpha 2A-AR and this effect was abolished in the presence of guanine nucleotide. Alpha 2A-AR-stimulated GTPase activity in platelet membranes was inhibited by peptide Q with an IC50 of 16 microM but A was inactive. These data suggest that both the second cytoplasmic loop and the C-terminal part of the third cytoplasmic loop of the alpha 2A-AR are important in the interaction between the alpha 2-AR and Gi protein. Peptide Q appears to destabilize the high affinity state of the alpha 2-AR by binding directly to Gi thus preventing it from coupling to the receptor under both binding and GTPase assay conditions. The peptide from the second cytoplasmic loop (A) also reduces high affinity agonist binding in a G protein-dependent manner but its interaction with receptor and G protein is distinct in that it does not prevent activation of the G protein. These results provide new information about regions of the alpha 2-adrenergic receptor involved in G protein coupling and high affinity agonist binding.  相似文献   

5.
Heptahelical receptors communicate extracellular information to the cytosolic compartment by binding an extensive variety of ligands. They do so through conformational changes that propagate to intracellular signaling partners as the receptor switches from a resting to an active conformation. This active state has been classically considered unique and responsible for regulation of all signaling pathways controlled by a receptor. However, recent functional studies have challenged this notion and called for a paradigm where receptors would exist in more than one signaling conformation. This study used bioluminescence resonance energy transfer assays in combination with ligands of different functional profiles to provide in vivo physical evidence of conformational diversity of delta-opioid receptors (DORs). DORs and alpha(i1)beta(1)gamma(2) G protein subunits were tagged with Luc or green fluorescent protein to produce bioluminescence resonance energy transfer pairs that allowed monitoring DOR-G protein interactions from different vantage points. Results showed that DORs and heterotrimeric G proteins formed a constitutive complex that underwent structural reorganization upon ligand binding. Conformational rearrangements could not be explained by a two-state model, supporting the idea that DORs adopt ligand-specific conformations. In addition, conformational diversity encoded by the receptor was conveyed to the interaction among heterotrimeric subunits. The existence of multiple active receptor states has implications for the way we conceive specificity of signal transduction.  相似文献   

6.
Minaba M  Ichiyama S  Kojima K  Ozaki M  Kato Y 《The FEBS journal》2006,273(24):5508-5516
Signal transduction mediated by heterotrimeric G proteins regulates a wide variety of physiological functions. We are interested in the manipulation of G-protein-mediating signal transduction using G-protein-coupled receptors, which are derived from evolutionarily distant organisms and recognize unique ligands. As a model, we tested the functionally coupling GOA-1, G alpha(i/o) ortholog in the nematode Caenorhabditis elegans, with the human muscarinic acetylcholine receptor M2 subtype (M2), which is one of the mammalian G alpha(i/o)-coupled receptors. GOA-1 and M2 were prepared as a fusion protein using a baculovirus expression system. The affinity of the fusion protein for GDP was decreased by addition of a muscarinic agonist, carbamylcholine and the guanosine 5'-[3-O-thio]triphosphate ([35S]GTPgammaS) binding was increased with an increase in the carbamylcholine concentrations in a dose-dependent manner. These effects evoked by carbamylcholine were completely abolished by a full antagonist, atropine. In addition, the affinity for carbamylcholine decreased under the presence of GTP as reported for M2-G alpha(i/o) coupling. These results indicate that the M2 activates GOA-1 as well as G alpha(i/o).  相似文献   

7.
β-Adrenergic receptors (βAR) and D(2)-like dopamine receptors (which include D(2)-, D(3)- and D(4)-dopamine receptors) activate G(s) and G(i), the stimulatory and inhibitory heterotrimeric G proteins, respectively, which in turn regulate the activity of adenylyl cyclase (AC). β(2)-Adrenergic receptors (β(2)AR) and D(4)-dopamine receptors (D(4)DR) co-immunoprecipitated when co-expressed in HEK 293 cells, suggesting the existence of a signaling complex containing both receptors. In order to determine if these receptors are closely associated with each other, and with other components involved in G protein-mediated signal transduction, β(2)AR, D(4)DR, G protein subunits (Gα(i1) and the Gβ(1)γ(2) heterodimer) and AC were tagged so that bioluminescence resonance energy transfer (BRET) could be used to monitor their interactions. All of the tagged proteins retained biological function. For the first time, FlAsH-labeled proteins were used in BRET experiments as fluorescent acceptors for the energy transferred from Renilla luciferase-tagged donor proteins. Our experiments revealed that β(2)AR, D(4)DR, G proteins and AC were closely associated in a functional signaling complex in cellulo. Furthermore, BRET experiments indicated that although activation of G(i) caused a conformational change within the heterotrimeric protein, it did not cause the Gβγ heterodimer to dissociate from the Gα(i1) subunit. Evidence for the presence of a signaling complex in vivo was obtained by purifying βAR from detergent extracts of mouse brain with alprenolol-Sepharose and showing that the precipitate also contained both D(2)-like dopamine receptors and AC.  相似文献   

8.
The objective of this study was to determine if a functional heterodimer of prolactin receptor (PRLR) and growth hormone receptor (GHR) can be formed in humans. A novel ligand was designed that is composed of a GHR antagonist (B2036) and a PRLR antagonist (G129R) fused in tandem (B2036-G129R). Because both B2036 and G129R are binding site 2 inactive antagonists, the B2036-G129R fusion protein, in theory contains only two functional binding site 1s: one for GHR and one for PRLR. We examined the behavior of this chimeric ligand in cell lines known to express GHR, PRLR, or both receptors. The data presented show that B2036-G129R is inactive in IM-9 cells that express only GHR or Nb2 cells that express PRLR. In T-47D cells that coexpress PRLR and GHR, B2036-G129R activates JAK2/STAT5 signaling. These findings provide evidence that B2036-G129R is able to activate signal transduction through a heterodimer of PRLR and GHR in humans.  相似文献   

9.
The mu opioid receptor (MOR) has been shown to desensitize after 1 h of exposure to the opioid peptide, [D-Ala(2), N-MePhe(4), Gly-ol(5)]enkephalin (DAMGO), largely by the loss of receptors from the cell surface and receptor down-regulation. We have previously shown that the Thr(394) in the carboxyl tail is essential for agonist-induced early desensitization, presumably by serving as a primary phosphorylation site for G protein-coupled receptor kinase. Using a T394A mutant receptor, we determined that Thr(394) was also responsible for mu opioid receptor down-regulation. The T394A mutant receptor displayed 50% reduction of receptor down-regulation (14.8%) compared with wild type receptor (34%) upon 1 h of exposure to DAMGO. Agonist-induced T394A receptor down-regulation was unaffected by pertussis toxin treatment, indicating involvement of a mechanism independent of G protein function. Interestingly, pertussis toxin-insensitive T394A receptor down-regulation was completely inhibited by a tyrosine kinase inhibitor, genistein. Tyrosine kinase inhibition blocked wild type MOR down-regulation by 50%, and the genistein-resistant wild type MOR down-regulation was completely pertussis toxin-sensitive. Following DAMGO stimulation, MOR was shown to be phosphorylated at tyrosine residue(s), indicating that the receptor was a direct substrate for tyrosine kinase action. Mutagenesis of the four intracellular tyrosine residues resulted in complete inhibition of the G protein-insensitive MOR internalization. Therefore, agonist-induced MOR down-regulation appears to be mediated by two distinct cellular signal transduction pathways. One is G protein-dependent and GRK-dependent, which can be abolished by pertussis toxin treatment of wild type MOR or by mutagenesis of Thr(394). The other novel pathway is G protein-independent but tyrosine kinase-dependent, blocked by genistein treatment, and one in which Thr(394) has no regulatory role but phosphorylation of tyrosine residues appears essential.  相似文献   

10.
The nature of the interaction of cloned alpha 2a-adrenergic receptors from LLC-PK1-O clone cells with G proteins was investigated using an immunoprecipitation approach. Following solubilization of the alpha 2a receptors, antiserum 8730, which is directed against the C-terminal region of Gi alpha, immunoprecipitated alpha 2a receptor-Gi alpha complexes. The immunoprecipitation was specific since it could be blocked by the peptide to which antiserum 8730 was generated. Antisera 3646 (anti-Gi alpha 1), 1521 (anti-Gi alpha 2), and 1518 (anti-Gi alpha 3) immunoprecipitated solubilized alpha 2a receptor-Gi alpha complexes, indicating that all three Gi alpha subtypes couple with the alpha 2a receptor. Antiserum 9072, which is directed against the C-terminal region of G(o)alpha, immunoprecipitated solubilized alpha 2a receptor-G alpha complexes indicating that these receptors are also coupled to G(o)alpha. Antiserum 8132, which is directed against G beta 36, immunoprecipitated solubilized alpha 2a receptors while the G beta 35 antiserum 8129, did not, indicating that alpha 2a receptors selectively associate with G beta 36. The binding of the partial agonist p-aminoclonidine to the solubilized alpha 2a receptor alters the association of the receptor with G proteins. Following p-aminoclonidine binding to the solubilized alpha 2a receptor, the ability of the C-terminal directed G alpha antisera 8730 and 9072 to coimmunoprecipitate the alpha 2a receptor-G alpha complex was greatly reduced. The effect of p-aminoclonidine was concentration dependent, mimicked by the full agonist UK 14304 and blocked by the alpha 2 receptor antagonist yohimbine. In contrast, antisera directed against internal regions of Gi alpha and G(o)alpha, immunoprecipitated the agonist-bound and agonist-free alpha 2a receptor equally well. These findings indicate that following the binding of agonists to the alpha 2a receptor, Gi alpha and G(o)alpha remain physically associated with the receptor but either the conformation of G alpha linked to the receptor or the conformation of the receptor itself is modified such that the epitope for the C-terminal directed anti-Gi alpha and anti-G(o)alpha antisera are not accessible. These agonist-induced conformational changes in the alpha 2a receptor-G alpha complex may be important for the activation of the G protein and the stimulation of the alpha 2a receptor signal transduction pathway.  相似文献   

11.
Dexras1 is a novel GTP-binding protein (G protein) that was recently discovered on the basis of rapid mRNA up-regulation by glucocorticoids in murine AtT-20 corticotroph cells and in several primary tissues. The human homologue of Dexras1, termed activator of G protein signaling-1 (AGS-1), has been reported to stimulate signaling by G(i) heterotrimeric G proteins independently of receptor activation. The effects of Dexras1/AGS-1 on receptor-initiated signaling by G(i) have not been examined. Here we report that Dexras1 inhibits ligand-dependent signaling by the G(i)-coupled N-formyl peptide receptor (FPR). Dexras1 and FPR were transiently co-expressed in both COS-7 and HEK-293 cells. Activation of FPR by ligand (N-formyl-methionine-leucine-phenylalanine (f-MLF)) caused phosphorylation of endogenous Erk-1/2 that was reduced by co-expression of Dexras1. Direct effects of Dexras1 on the activity of co-expressed, epitope-tagged Erk-2 (hemagglutinin (HA)-Erk-2) were measured by immune complex in vitro kinase assay. Expression of Dexras1 alone resulted in a 1.9- to 4.9-fold increase in HA-Erk-2 activity; expression of the unliganded FPR alone resulted in a 6.2- to 8.1-fold increase in HA-Erk-2 activity. Stimulation of FPR by f-MLF produced a further 8- to 10-fold increase in HA-Erk-2 activity over the basal (non-ligand-stimulated) state, and this ligand-dependent activity was attenuated at the time points of maximal activity by co-expression of Dexras1 (reduced 31 +/- 6.8% in COS-7 at 10 min and 86 +/- 9.2% in HEK-293 at 5 min, p < 0.01 for each). Expression of Dexras1 did not influence protein expression of FPR or Erk, suggesting that the inhibitory effects of Dexras1 reflect a functional alteration in the signaling cascade from FPR to Erk. Expression of Dexras1 had no effect on expression of G(i)alpha species, but significantly impaired pertussis toxin-catalyzed ADP-ribosylation of membrane-associated G(i)alpha. Expression of Dexras1 also significantly decreased in vitro binding of GTPgammaS in f-MLF-stimulated membranes of cells co-transfected with FPR. These data suggest that Dexras1 inhibits signal transduction from FPR to Erk-1/2 through an effect that is very proximal to receptor-G(i) coupling. While Dexras1 weakly activates Erk in the resting state, more potent effects are evident in the modulation of ligand-stimulated receptor signal transduction, where Dexras1 functions as an inhibitor rather than activator of the Erk mitogen-activated protein kinase signaling cascade.  相似文献   

12.
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.  相似文献   

13.
Increasing number of publications shows that cannabinoid receptor 1 (CB(1)) specific compounds might act in a CB(1) independent manner, including rimonabant, a potent CB(1) receptor antagonist. Opioids, cannabinoids and their receptors are well known for their overlapping pharmacological properties. We have previously reported a prominent decrease in μ-opioid receptor (MOR) activity when animals were acutely treated with the putative endocannabinoid noladin ether (NE). In this study, we clarified whether the decreased MOR activation caused by NE could be reversed by rimonabant in CB(1) receptor deficient mice. In functional [(35)S]GTPγS binding assays, we have elucidated that 0.1mg/kg of intraperitoneal (i.p.) rimonabant treatment prior to that of NE treatment caused further attenuation on the maximal stimulation of Tyr-d-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO), which is a highly specific MOR agonist. Similar inhibitory effects were observed when rimonabant was injected i.p. alone and when it was directly applied to forebrain membranes. These findings are cannabinoid receptor independent as rimonabant caused inhibition in both CB(1) single knockout and CB(1)/CB(2) double knockout mice. In radioligand competition binding assays we highlighted that rimonabant fails to displace effectively [(3)H]DAMGO from MOR in low concentrations and is highly unspecific on the receptor at high concentrations in CB(1) knockout forebrain and in their wild-type controls. Surprisingly, docking computational studies showed a favorable binding position of rimonabant to the inactive conformational state of MOR, indicating that rimonabant might behave as an antagonist at MOR. These findings were confirmed by radioligand competition binding assays in Chinese hamster ovary cells stably transfected with MOR, where a higher affinity binding site was measured in the displacement of the tritiated opioid receptor antagonist naloxone. However, based on our in vivo data we suggest that other, yet unidentified mechanisms are additionally involved in the observed effects.  相似文献   

14.
Regulation and function of G alpha protein subunits in Dictyostelium   总被引:28,自引:0,他引:28  
We have examined the developmental regulation and function of two G alpha protein subunits, G alpha 1 and G alpha 2, from Dictyostelium. G alpha 1 is expressed in vegetative cells through aggregate stages while G alpha 2 is inducible by cAMP pulses and preferentially expressed in aggregation. Our results suggest that G alpha 2 encodes the G alpha protein subunit associated with the cAMP receptor and mediates all known receptor-activated intracellular signal transduction processes, including chemotaxis and gene regulation. G alpha 1 appears to function in both the cell cycle and development. Overexpression of G alpha 1 results in large, multinucleated cells that develop abnormally. The central role that these G alpha proteins play in signal transduction processes and in controlling Dictyostelium development is discussed.  相似文献   

15.
Molecular interactions between the photoreceptor G protein and rhodopsin   总被引:1,自引:0,他引:1  
1. The visual transduction system of the vertebrate retina is a well-studied model for biochemical and molecular studies of signal transduction. The structure and function of rhodopsin, a prototypical G protein-coupled receptor, and transducin or Gt, the photoreceptor G protein, have been particularly well studied. Mechanisms of rhodopsin-Gt interaction are discussed in this review. 2. The visual pigment rhodopsin contains a chromophore, and thus conformational changes leading to activation can be monitored spectroscopically. A model of the conformational changes in the activated receptor is presented based on biophysical and biochemical data. 3. The current information on sites of interaction on receptors and cognate G proteins is summarized. Studies using synthetic peptides from amino acid sequences corresponding to Gt and rhodopsin have provided information on the sites of rhodopsin-Gt interaction. Synthetic peptides from the carboxyl terminal region of alpha t mimic Gt by stabilizing the active conformation of rhodopsin, Metarhodopsin II. 4. The conformation of one such peptide when it is bound to Metarhodopsin II was determined by 2D NMR. The model based on the NMR data was tested using peptide analogs predicted to stabilize or break the structure. These studies yield molecular insight into why toxin-treated and mutant G proteins are uncoupled from receptors.  相似文献   

16.
17.
The carboxyl terminal of heterotrimeric G protein alpha subunits binds both G protein-coupled receptors and mastoparan (MP), a tetradecapeptide allostere. Moreover, peptides corresponding to the carboxyl domains of G(i)3alpha and G(t) display intrinsic biological activities in cell-free systems. Thus, the purpose of this study was to develop a cell penetrant delivery system to further investigate the biological properties of a peptide mimetic of the G(i)3alpha carboxyl terminal (G(i)3alpha(346-355); H-KNNLKECGLY-NH2). Kinetic studies, using a CFDA-conjugated analogue of G(i)3alpha(346-355), confirmed the rapid and efficient intracellular translocation of TP10-G(i)3alpha(346-355) (t(0.5) = 3 min). Translocated G(i)3alpha(346-355), but not other bioactive cargoes derived from PKC and the CB1 cannabinoid receptor, promoted the dual phosphorylation of p42/p44 MAPK without adverse changes in cellular viability. The relative specificity of this novel biological activity was further confirmed by the observation that translocated G(i)3alpha(346-355) did not influence the exocytosis of beta-hexoseaminidase from RBL-2H3, a secretory event stimulated by other cell penetrant peptide cargoes and MP. We conclude that TP10-G(i)3alpha(346-355) is a valuable, non-toxic research tool with which to study and modulate signal transduction pathways mediated by heterotrimeric G proteins and MAPK.  相似文献   

18.
The pharmacology of G protein-coupled receptors is widely accepted to depend on the G protein subunit to which the agonist-stimulated receptor couples. In order to investigate whether CB(1) agonist-mediated signal transduction via an engineered G(alpha 16) system is different than that of the G(i/o) coupling normally preferred by the CB(1) receptor, we transfected the human recombinant CB(1) receptor (hCB(1)) or a fusion protein comprising the hCB(1) receptor and G(alpha 16) (hCB(1)-G(alpha 16)) into HEK293 cells. From competition binding studies, the rank order of ligand affinities at the hCB(1)-G(alpha 16) fusion protein was found to be similar to that for hCB(1): HU 210 > CP 55,940 > or = SR 141716A > WIN 55212-2 > anandamide > JWH 015. Agonists increased [(35)S]GTP gamma S binding or inhibited forskolin-stimulated cAMP, presumably by coupling to G(i/o), in cells expressing hCB(1) but not hCB(1)-G(alpha 16). However, an analogous rank order of potencies was observed for these agonists in their ability to evoke increases in intracellular calcium concentration in cells expressing hCB(1)-G(alpha 16) but not hCB(1). These data demonstrate that ligand affinities for the hCB(1) receptor are not affected by fusion to the G(alpha 16) subunit. Furthermore, there is essentially no difference in the function of the hCB(1) receptor when coupled to G(i/o) or G (alpha 16).  相似文献   

19.
alpha 2-adrenergic receptor-mediated signal transduction in rat adrenocortical carcinoma cells occurs through the opposing regulation of two second messengers, cyclic GMP and cyclic AMP, in which guanylate cyclase is coupled positively and adenylate cyclase negatively to the receptor signal. We now show that in these cells phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, inhibits the alpha 2-agonist (p-aminoclodine)-dependent production of cyclic GMP in a dose-dependent and time-dependent fashion. The half-maximal inhibitory concentration of PMA was 10(-10) M. A protein kinase C inhibitor, 1-(5-isoquinolinyl-sulfonyl)-2-methyl piperazine (H-7), caused the release of the PMA-dependent attenuation of p-aminoclodine-stimulated cyclic GMP formation. These results suggest that protein kinase C negatively regulates the alpha 2-receptor coupled cyclic GMP system in these cells, a feature apparently shared with the other cyclic GMP-coupled receptors such as those of muscarine, histamine, and atrial natriuretic factor.  相似文献   

20.
Alpha 1-Antitrypsin (alpha 1-AT) is similar to other members of the serine protease inhibitor (serpin) supergene family in that it undergoes structural rearrangement during the formation of a covalently stabilized inhibitory complex with its cognate enzyme, neutrophil elastase. We have recently demonstrated an abundant, high-affinity cell surface receptor on human hepatoma cells and human mononuclear phagocytes which recognizes a conformation-specific domain of the alpha 1-AT-elastase complex as well as of other serpin-enzyme complexes (Perlmutter, D. H., Glover, G. I., Rivetna, M., Schasteen, C. S., and Fallon, R. J. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3753-3757). Binding to this serpin-enzyme complex (SEC) receptor activates a signal transduction pathway for increased expression of the alpha 1-AT gene and may be responsible for clearance of serpin-enzyme complexes. In this study, we show that there is time-dependent and saturable internalization of alpha 1-AT-elastase and alpha 1-AT-trypsin complexes in human hepatoma HepG2 cells. Internalization is mediated by the SEC receptor as defined by inhibition by synthetic peptides corresponding to residues 359-374 of alpha 1-AT. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of intracellular radioactivity demonstrated that intact 75- and 66-kDa alpha 1-AT-trypsin complexes were internalized. Kinetic analysis of internalization at 37 degrees C showed that a single cohort of 125I-alpha 1-AT-trypsin complexes, prebound to cells at 4 degrees C, disappeared from the cell surface and accumulated intracellularly within 5-15 min at 37 degrees C. The intracellular concentration of radiolabeled complexes then decreased rapidly coincident with appearance of acid-soluble degradation products in the extracellular culture fluid. Intracellular degradation was inhibited by internalization at 18 degrees C or by internalization at 37 degrees C in the presence of weak bases ammonium chloride, primaquine, and chloroquine, indicating that degradation is lysosomal. These results indicate that in addition to its role in signal transduction the SEC receptor participates in internalization and delivery of alpha 1-AT-protease complexes to lysosome for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号