首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.  相似文献   

2.
Ping Li  John R. Flenley 《Grana》2013,52(1):59-64
The importance of research leading to the automation of pollen identification is briefly outlined. A new technique, neural network analysis, is briefly introduced, and then applied to the determination of light microscope images of pollen grains. The results are compared with some previously published statistical classifiers. Although both types of classifiers may work, the neural network is apparently superior to the statistical methods in three ways: high success rates (100% in this case), small number of samples needed for training, and simplicity of features.  相似文献   

3.
[This corrects the article DOI: 10.1007/s11571-010-9110-4.].  相似文献   

4.
This paper presents a vision-based force measurement method using an artificial neural network model. The proposed model is used for measuring the applied load to a spherical biological cell during micromanipulation process. The devised vision-based method is most useful when force measurement capability is required, but it is very challenging or even infeasible to use a force sensor. Artificial neural networks in conjunction with image processing techniques have been used to estimate the applied load to a cell. A bio-micromanipulation system capable of force measurement has also been established in order to collect the training data required for the proposed neural network model. The geometric characterization of zebrafish embryos membranes has been performed during the penetration of the micropipette prior to piercing. The geometric features are extracted from images using image processing techniques. These features have been used to describe the shape and quantify the deformation of the cell at different indentation depths. The neural network is trained by taking the visual data as the input and the measured corresponding force as the output. Once the neural network is trained with sufficient number of data, it can be used as a precise sensor in bio-micromanipulation setups. However, the proposed neural network model is applicable for indentation of any other spherical elastic object. The results demonstrate the capability of the proposed method. The outcomes of this study could be useful for measuring force in biological cell micromanipulation processes such as injection of the mouse oocyte/embryo.  相似文献   

5.
6.
 Synchronous firing of a population of neurons has been observed in many experimental preparations; in addition, various mathematical neural network models have been shown, analytically or numerically, to contain stable synchronous solutions. In order to assess the level of synchrony of a particular network over some time interval, quantitative measures of synchrony are needed. We develop here various synchrony measures which utilize only the spike times of the neurons; these measures are applicable in both experimental situations and in computer models. Using a mathematical model of the CA3 region of the hippocampus, we evaluate these synchrony measures and compare them with pictorial representations of network activity. We illustrate how synchrony is lost and synchrony measures change as heterogeneity amongst cells increases. Theoretical expected values of the synchrony measures for different categories of network solutions are derived and compared with results of simulations. Received: 6 June 1994/Accepted in revised form: 13 January 1995  相似文献   

7.
We studied the use of a supervised artificial neural network (ANN) model for semi-automated identification of 18 common European species of Thysanoptera from four genera: Aeolothrips Haliday (Aeolothripidae), Chirothrips Haliday, Dendrothrips Uzel, and Limothrips Haliday (all Thripidae). As input data, we entered 17 continuous morphometric and two qualitative two-state characters measured or determined on different parts of the thrips body (head, pronotum, forewing and ovipositor) and the sex. Our experimental data set included 498 thrips specimens. A relatively simple ANN architecture (multilayer perceptrons with a single hidden layer) enabled a 97% correct simultaneous identification of both males and females of all the 18 species in an independent test. This high reliability of classification is promising for a wider application of ANN in the practice of Thysanoptera identification.  相似文献   

8.
Gurbuz  Hasan  Kivrak  Ersin  Soyupak  Selcuk  Yerli  Sedat V. 《Hydrobiologia》2003,498(1-3):133-141
A 14.6 m long profile from the northern part of the Hulun lake, the furthest north of the large lakes of China, has provided a sedimentary and diatom record since the late Glacial. The chronological sequence was established based on 10 radiocarbon dates. Sedimentological study and diatom analysis are synthesized for the reconstruction of the history of lake-level changes. The results show that the Hulun basin was not occupied by a lake during the Last Glaciation. A rapid transition to a deep lake occurred since 12850 yr B.P., and this high level phase lasted to 11200 yr B.P., although there existed several subordinate lake level fluctuations. An abrupt lake level drop and dry climatic conditions occurred during 11200–10600 yr B.P. The lake became deeper again from 10600 yr B.P. to 10300 yr B.P. Hulun lake at the early Holocene was characterized by the low lake-level, and the lake level rose again in 7200–5800 yr B.P., though the lake-levels changed quite variably. A dry condition occurred and lake level declined again during 5800–3000 yr B.P. The presence of the palaeosol on the top of this profile indicates the persistence of low lake levels after 3000 yr B.P. The comparison with the other lake-level records from northern China has suggested that the Hulun Lake shows a different lake level history from the lakes in monsoon areas.  相似文献   

9.
Clark JY 《Bio Systems》2003,72(1-2):131-147
This paper is a study of the value of applying artificial neural networks (ANNs), specifically a multilayer perceptron (MLP), to identification of higher plants using morphological characters collected by conventional means. A practical methodology is thus demonstrated to enable botanical or zoological taxonomists to use ANNs as advisory tools for identification purposes. A comparison is made between the ability of the neural network and that of traditional methods for plant identification by means of a case study in the flowering plant genus Lithops N.E. Brown (Aizoaceae). In particular, a comparison is made with taxonomic keys generated by means of the DELTA system. The ANN is found to perform better than the DELTA key generator, for conditions where the available data is limited, and species relatively difficult to distinguish.  相似文献   

10.
According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function.  相似文献   

11.
This contribution presents a novel method for the direct integration of a-priori knowledge in a neural network and its application for the online determination of a secondary metabolite during industrial yeast fermentation. Hereby, existing system knowledge is integrated in an artificial neural network (ANN) by means of 'functional nodes'. A generalized backpropagation algorithm is presented. For illustration, a set of ordinary differential equations describing the diacetyl formation and degradation during the cultivation is incorporated in a functional node and integrated in a dynamic feedforward neural network in a hybrid manner. The results show that a hybrid modelling approach exploiting available a-priori knowledge and experimental data can considerably outperform a pure data-based modelling approach with respect to robustness, generalization and necessary amount of training data. The number of training sets were decreased by 50%, obtaining the same accuracy as in a conventional approach. All incorrect decisions, according to defined cost criteria obtained with the conventional ANN, were avoided.  相似文献   

12.
The use of two-dimensional scanning fluorometry as an on-line, noninvasive, in situ bioreactor monitoring technique is extended to complex bioprocesses using mixed cultures, with particular attention to biofilm systems. Using the example of spectra subtraction, it is demonstrated that established methods for fluorescence data analysis have a limited capability of utilizing overall fluorometric information. Artificial neural networks (ANNs) are introduced as a novel nonlinear and nonmechanistic technique for interpreting the highly complex fluorescence maps. It is shown that ANNs are able to infer process performance parameters in a pattern recognition approach, based on the entire fluorescence "fingerprint" of the biological system. The studies were carried out using an extractive membrane bioreactor (EMB) for the degradation of chlorinated organic compounds, operating with mixed cultures. Model pollutants em- ployed were 1,2-dichloroethane, 3-chloro-4-methylaniline, and p-toluidine.  相似文献   

13.
Selection of machine learning techniques requires a certain sensitivity to the requirements of the problem. In particular, the problem can be made more tractable by deliberately using algorithms that are biased toward solutions of the requisite kind. In this paper, we argue that recurrent neural networks have a natural bias toward a problem domain of which biological sequence analysis tasks are a subset. We use experiments with synthetic data to illustrate this bias. We then demonstrate that this bias can be exploitable using a data set of protein sequences containing several classes of subcellular localization targeting peptides. The results show that, compared with feed forward, recurrent neural networks will generally perform better on sequence analysis tasks. Furthermore, as the patterns within the sequence become more ambiguous, the choice of specific recurrent architecture becomes more critical.  相似文献   

14.
Determining processes constraining adaptation is a major challenge facing evolutionary biology, and sex allocation has proved a useful model system for exploring different constraints. We investigate the evolution of suboptimal sex allocation in a solitary parasitoid wasp system by modelling information acquisition and processing using artificial neural networks (ANNs) evolving according to a genetic algorithm. Theory predicts an instantaneous switch from the production of male to female offspring with increasing host size, whereas data show gradual changes. We found that simple ANNs evolved towards producing sharp switches in sex ratio, but additional biologically reasonable assumptions of costs of synapse maintenance, and simplification of the ANNs, led to more gradual adjustment. Switch sharpness was robust to uncertainty in fitness consequences of host size, challenging interpretations of previous empirical findings. Our results also question some intuitive hypotheses concerning the evolution of threshold traits and confirm how neural processing may constrain adaptive behaviour.  相似文献   

15.
Using the theory of random point processes, a method is presented whereby functional relationships between neurons can be detected and modeled. The method is based on a point process characterization involving stochastic intensities and an additive rate function model. Estimates are based on the maximum likelihood (ML) principle and asymptotic properties are examined in the absence of a stationarity assumption. An iterative algorithm that computes the ML estimates is presented. It is based on the expectation/maximization (EM) procedure of Dempster et al. (1977) and makes ML identification accessible to models requiring many parameters. Examples illustrating the use of the method are also presented. These examples are derived from simulations of simple neural systems that cannot be identified using correlation techniques. It is shown that the ML method correctly identifies each of these systems.  相似文献   

16.
The debilitating effects of injury to the nervous system can have a profound effect on daily life activities of the injured person. In this article, we present a project overview in which we are utilizing computational and biological principles, along with simulation and experimentation, to create a realistic computational model of natural and injured sensorimotor control systems. Through the development of hybrid in silico/biological coadaptive symbiotic systems, the goal is to create new technologies that yield transformative neuroprosthetic rehabilitative solutions and a new test bed for the development of integrative medical devices for the repair and enhancement of biological systems.  相似文献   

17.
18.
The goal of this work was to analyze an image data set and to detect the structural variability within this set. Two algorithms for pattern recognition based on neural networks are presented, one that performs an unsupervised classification (the self-organizing map) and the other a supervised classification (the learning vector quantization). The approach has a direct impact in current strategies for structural determination from electron microscopic images of biological macromolecules. In this work we performed a classification of both aligned but heterogeneous image data sets as well as basically homogeneous but otherwise rotationally misaligned image populations, in the latter case completely avoiding the typical reference dependency of correlation-based alignment methods. A number of examples on chaperonins are presented. The approach is computationally fast and robust with respect to noise. Programs are available through ftp.  相似文献   

19.
有孔虫个体微小、数量众多、地理分布广、演化迅速, 是记录海洋沉积环境的重要载体, 在海相生物地层划分和对比中具有十分重要的作用。因有孔虫属种众多, 传统的属种鉴定需要经验丰富的专业人员进行人工鉴定且耗时较长, 此外人工鉴定古生物面临人才匮乏和工作量大等问题。卷积神经网络在计算机视觉领域的应用可较好的解决上述问题。利用古生物专家对中新世浮游有孔虫化石标注为指导, 根据有孔虫化石不同方向的视角分类, 结合卷积神经网络算法, 开发了有孔虫化石图像识别系统。研究发现, 通过有孔虫化石腹视、缘视和背视角度分类, 采取两级分段式鉴定算法对中新世浮游有孔虫属一级进行识别, 属一级鉴定准确率达到82%左右。  相似文献   

20.
We introduce a nonlinear modification of the classical Hawkes process allowing inhibitory couplings between units without restrictions. The resulting system of interacting point processes provides a useful mathematical model for recurrent networks of spiking neurons described as Wiener cascades with exponential transfer function. The expected rates of all neurons in the network are approximated by a first-order differential system. We study the stability of the solutions of this equation, and use the new formalism to implement a winner-takes-all network that operates robustly for a wide range of parameters. Finally, we discuss relations with the generalised linear model that is widely used for the analysis of spike trains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号