首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproducible and inducible knockdown of gene expression in mice   总被引:7,自引:0,他引:7  
RNA interference (RNAi) has emerged as an efficient approach for rapid analysis of gene function. In mammalian cells, vector-based expression of small hairpin RNAs (shRNA) produces potent and stable gene knockdown effects. An inducible RNAi system with reproducible levels of siRNA expression will extend the usefulness of this methodology to the identification of gene functions within the developing or adult mouse. We present evidence that an RNA polymerase III-driven U6 promoter with stuffer sequences flanked by loxP sites inserted at three different sites within the promoter drives shRNA expression in a Cre recombinase-dependent manner. We utilized this approach to develop a generic strategy for the reproducible knockdown of gene expression in mice. By placing the inducible shRNA cassette into the ROSA26 locus of the mouse, we were able to generate reproducible levels of controlled expression of shRNA to produce discernable phenotypes in vitro and in vivo. This approach circumvents the prescreening of random integration in embryonic stem cell clones and further enables conditional gene knockdown with temporal and/or tissue specificity. This methodology should expedite large-scale functional studies.  相似文献   

2.
3.
RNA interference (RNAi) is a simple and powerful tool widely used for studying gene function in a number of species. Recently, inducible regulation of RNAi in mammalian cells using either tetracycline- or ecdysone-responsive systems has been developed to prevent potential lethality or non-physiological responses associated with persistent suppression of genes that are essential for cell survival or cell cycle progression. Here we show that the inducible regulation of RNAi also can be achieved by using a Cre–LoxP approach. We demonstrate that the insertion of a loxP-flanked neomycin cassette into RNA polymerase III promoter, which controls a vector-based RNAi unit, impairs the promoter activity. However, the expression of RNAi construct can be completely restored upon the removal of the neo cassette using a tamoxifen inducible Cre construct. We show that this system works with high efficiency in suppression of two endogenous genes, Fgfr2 and Survivin, in mouse embryonic stem (ES) cells, as evidenced by the decrease of levels of gene expression, reduced cell proliferation and colony formation. This system provides a potentially important yet simple approach to establish mutant mouse strains for functional study at defined stages upon turning on the inducible switches controlled by the Cre–LoxP system.  相似文献   

4.
RNA interference (RNAi) is a simple and powerful tool widely used for studying gene function in a number of species. Recently, inducible regulation of RNAi in mammalian cells using either tetracycline- or ecdysone-responsive systems has been developed to prevent potential lethality or non-physiological responses associated with persistent suppression of genes that are essential for cell survival or cell cycle progression. Here we show that the inducible regulation of RNAi also can be achieved by using a Cre-LoxP approach. We demonstrate that the insertion of a loxP-flanked neomycin cassette into RNA polymerase III promoter, which controls a vector-based RNAi unit, impairs the promoter activity. However, the expression of RNAi construct can be completely restored upon the removal of the neo cassette using a tamoxifen inducible Cre construct. We show that this system works with high efficiency in suppression of two endogenous genes, Fgfr2 and Survivin, in mouse embryonic stem (ES) cells, as evidenced by the decrease of levels of gene expression, reduced cell proliferation and colony formation. This system provides a potentially important yet simple approach to establish mutant mouse strains for functional study at defined stages upon turning on the inducible switches controlled by the Cre-LoxP system.  相似文献   

5.
RNA interference (RNAi) inhibits gene expression by specifically degrading target mRNAs. Since the discovery of double-stranded small interference RNA (siRNA) in gene silencing, RNAi has become a powerful research tool in gene function studies. Compared to genetic deletion, RNAi-mediated gene silencing possesses many advantages, such as the ease with which it is carried out and its suitability to most cell lines. Multiple studies have demonstrated the applications of RNAi technology in cancer research. In particular, the development of the DNA vector-based technology to produce small hairpin RNA (shRNA) driven by the U6 or H1 promoter has made long term and inducible gene silencing possible. Its use in combination with genetically engineered viral vectors, such as lentivirus, facilitates high efficiencies of shRNA delivery and/or integration into genomic DNA for stable shRNA expression. We describe a detailed procedure using the DNA vector-based RNAi technology to determine gene function, including construction of lentiviral vectors expressing shRNA, lentivirus production and cell infection, and functional studies using a mouse xenograft model. Various strategies have been reported in generating shRNA constructs. The protocol described here employing PCR amplification and a 3-fragment ligation can be used to directly and efficiently generate shRNA-containing lentiviral constructs without leaving any extra nucleotide adjacent to a shRNA coding sequence. Since the shRNA-expression cassettes created by this strategy can be cut out by restriction enzymes, they can be easily moved to other vectors with different fluorescent or antibiotic markers. Most commercial transfection reagents can be used in lentivirus production. However, in this report, we provide an economic method using calcium phosphate precipitation that can achieve over 90% transfection efficiency in 293T cells. Compared to constitutive shRNA expression vectors, an inducible shRNA system is particularly suitable to knocking down a gene essential to cell proliferation. We demonstrate the gene silencing of Yin Yang 1 (YY1), a potential oncogene in breast cancer, by a Tet-On inducible shRNA system and its effects on tumor formation. Research using lentivirus requires review and approval of a biosafety protocol by the Biosafety Committee of a researcher's institution. Research using animal models requires review and approval of an animal protocol by the Animal Care and Use Committee (ACUC) of a researcher's institution.  相似文献   

6.
RNA interference (RNAi) by means of short hairpin RNA (shRNA) has developed into a powerful tool for loss-of-function analysis in mammalian cells. The principal problem in RNAi experiments is off-target effects, and the most vigorous demonstration of the specificity of shRNA is the rescue of the RNAi effects with a shRNA-resistant target gene. This presents its own problems, including the unpredictable relative expression of shRNA and rescue cDNA in individual cells, and the difficulty in generating stable cell lines. In this report, we evaluated the plausibility of combining the expression of shRNA and rescue cDNA in the same vector. In addition to facilitate the validation of shRNA specificity, this system also considerably simplifies the generation of shRNA-expressing cell lines. Since the compensatory cDNA is under the control of an inducible promoter, stable shRNA-expressing cells can be generated before the knockdown phenotypes are studied by conditionally turning off the rescue protein. Conversely, the rescue protein can be activated after the endogenous protein is completely repressed. This approach is particularly suitable when prolonged expression of either the shRNA or the compensatory cDNA is detrimental to cell growth. This system allows a convenient one-step validation of shRNA and generation of stable shRNA-expressing cells.  相似文献   

7.
Conditional gene silencing in mammalian cells, via the controlled expression of short hairpin RNAs (shRNAs), is an effective method for studying gene function, particularly if the gene is essential for cell survival or development. Here we describe a simple and rapid protocol for the generation of tetracycline (Tet)-inducible vectors that express shRNAs in a time- and dosage-dependent manner. Tet-operator (TetO) sequences responsive to occupation by the Tet-repressor (TetR) were inserted at alternative positions within the wild-type H1 promoter and cloned into a eukaryotic expression vector. Additional cloning sites downstream of the promoter enable the insertion of shRNA sequences. This Tet-inducible shRNA expression system can be used for both transient and stable RNA interference (RNAi) approaches to control gene function in a spatiotemporal fashion. The entire protocol (preparation of constructs, generation of stable cell lines and functional analysis) can be completed in 3 months.  相似文献   

8.
Nanog基因是在早期胚胎和干细胞等多能性细胞中特异表达的重要基因,但有关猪Nanog基因功能的相关研究甚少。四环素诱导干扰载体是一种可通过四环素等药物条件性诱导干扰目的基因的载体,尤其适用于在发育过程中起着关键作用的基因沉默。常规的四环素干扰系统为二元载体,与一元载体相比获得针对特定基因干扰的稳定细胞系所需周期更长。首先通过构建pGenesil 1.0-shRNA重组干扰载体,瞬时转染稳定过表达猪Nanog基因的猪胎儿成纤维细胞后通过Realtime-PCR筛选出干扰效率可达80%以上的干扰片段。之后将筛选得到的干扰片段插入到改造的一元四环素诱导干扰载体TREsilencer,对稳定表达猪Nanog基因的猪胎儿成纤维细胞进行了瞬时转染。实验分别通过光密度检测以及Realtime-PCR检测了不同浓度doxycycline的诱导效率和干扰效率。结果表明,所构建的四环素诱导干扰载体TREsilencer-shRNA5随着四环素浓度的增加,诱导Nanog基因的干扰效率增加,在处理浓度为1μg/ml时干扰效率可达70%以上,为后续得到可诱导的稳定干扰猪Nanog基因的细胞系和进一步研究猪Nanog基因功能奠定了基础。  相似文献   

9.
BACKGROUND: RNA interference (RNAi) is a powerful and widely used gene silencing strategy for studying gene function in mammalian cells. Transient or constitutive expression of either small interfering RNA (siRNA) or short hairpin RNA (shRNA) results in temporal or persistent inhibition of gene expression, respectively. A tightly regulated and reversibly inducible RNAi-mediated gene silencing approach could conditionally control gene expression in a temporal or spatial manner that provides an extremely useful tool for studying gene function involved in cell growth, survival and development. MATERIAL AND METHODS: In this study, we have developed a lactose analog isopropyl thiogalactose (IPTG)-responsive lac repressor-operator-controlled RNA polymerase III (Pol III)-dependent human RNase P RNA (H1) promoter-driven inducible siRNA expression system. To demonstrate its tight regulation, efficient induction and reversible inhibition, we have used this system to conditionally control the expression of firefly luciferase and human tumor suppressor protein p53 in both transient transfection cells and established stable clones. RESULTS: The results showed that this inducible siRNA expression system could efficiently induce conditional inhibition of these two genes in a dose- and time-dependent manner by administration of the inducing agent IPTG as well as being fully reverted after withdrawal of IPTG. In particular, this system could conditionally inhibit the expression of both the genes in not only established stable clones but also transient transfection cells, which should greatly increase its usefulness and convenience. CONCLUSIONS: The results presented in this study clearly indicate that this inducible siRNA expression system could efficiently, conditionally and reversibly inhibit gene expression with only very low or undetectable background silencing effects under non-inducing condition. Thus, this inducible siRNA expression system provides an ideal genetic switcher allowing the inducible and reversible control of specific gene activity in mammalian cells.  相似文献   

10.
发夹RNA(shRNA)在哺乳动物RNAi研究中的应用   总被引:1,自引:0,他引:1  
胡燕宾  聂奎 《生物技术》2006,16(2):79-82
在哺乳动物的RNAi研究中,载体表达的shRNA分子比细胞同时表达的siRNA分子的正义链与反义链对靶基因的抑制效率要高。shRNA可由PolⅢ的启动子在体内表达产生,酶切cDNA和shRNA芯片是产生shRNA的最新方法。对shRNA的设计应注意靶基因序列、环序列以及载体酶切位点的选择。诱导表达shRNA的载体系统的表达效率有所差异,质粒载体转染效率尚不稳定,且持续时间短,通过病毒载体介导是目前进行基因敲除最有效的工具。  相似文献   

11.
12.
Sandy P  Ventura A  Jacks T 《BioTechniques》2005,39(2):215-224
Silencing of gene expression by RNA interference (RNAi) has become a powerful tool for the functional annotation of the Caenorhabditis elegans and Drosophila melanogaster genomes. Recent advances in the design and delivery of targeting molecules now permit efficient and highly specific gene silencing in mammalian systems as well. RNAi offers a simple, fast, and cost-effective alternative to existing gene targeting technologies both in cell-based and in vivo settings. Synthetic small interfering RNA (siRNA) and retroviral short hairpin RNA (shRNA) libraries targeting thousands of human and mouse genes are publicly available for high-throughput genetic screens, and knockdown animals can be rapidly generated by lentivirus-mediated transgenesis. RNAi also holds great promise as a novel therapeutic approach. This review provides insight into the current gene silencing techniques in mammalian systems.  相似文献   

13.
14.
15.
16.
17.
Ling X  Li F 《BioTechniques》2004,36(3):450-4, 456-60
Silencing of mammalian gene expression by RNA interference (RNAi) technology can be achieved using small interfering RNA (siRNA) or short hairpin RNA (shRNA). However, the relative effectiveness of these two approaches is not known. It is also not clear whether gene-specific shRNA transcribed from an RNA polymerase II (Pol II)-directed promoter in a fusion form can disrupt the targeted gene expression. Here, we report that using both luciferase and antiapoptotic survivin genes as targets, both siRNA and shRNA approaches significantly silenced the targeted gene expression in cancer cells. We further demonstrated that shRNAs transcribed from an RNA Pol II-mediated promoter in a green fluorescent protein (GFP) fusion form at the 3'-untranslated region silenced luciferase and survivin expression as well, suggesting that the extra RNA sequence outside of the shRNA hairpin does not disrupt shRNA function. We also showed that silencing of survivin expression selectively induces apoptosis in transfected cells. Together, we have validated multiple approaches of RNAi technology using both survivin and luciferase genes as targets and demonstrated for the first time that GFP-shRNAs transcribed from an RNA Pol II-mediated promoter could mediate gene silencing, which may lead to new directions for the application of RNAi technology.  相似文献   

18.
19.
RNA-interference (RNAi) silences gene expression by'guiding mRNA degradation in asequence-specific fashion.Small interfering RNA (siRNA),an intermediate of the RNAi pathway,has beenshown to be very effective in inhibiting virus infection in mammalian cells and cultured plant cells.Here,wereport that Agrobacterium tumefaciens-mediated transient expression of short hairpin RNA (shRNA) couldinhibit tobacco mosaic virus (TMV) RNA accumulation by targeting the gene encoding the replication-asso-ciated 126 kDa protein in intact plant tissue.Our results indicate that transiently expressed shRNA efficientlyinterfered with TMV infection.The interference observed is sequence-specific,and time-and site-dependent.Transiently expressed shRNA corresponding to the TMV 126 kDa protein gene did not inhibit cucumbermosaic virus (CMV),an unrelated tobamovirus.In order to interfere with TMV accumulation in tobaccoleaves,it is essential for the shRNA constructs to be infiltrated into the same leaves as TMV inoculation.Ourresults support the view that RNAi opens the door for novel therapeutic procedures against virus diseases.We propose that a combination of the RNAi technique and Agrobacterium-mediated transient expressioncould be employed as a potent antiviral treatment in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号