首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviours of the principal NADPH-producing enzymes (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, cytoplasmic and mitochondrial 'malic' enzyme and NAPD+-dependent isocitrate dehydrogenase) were studied during the development of rat heart and compared with those in brain and liver. 1. The enzymes belonging to the pentose phosphate pathway exhibit lower activities in heart than in other tissues throughout development. 2. The pattern of induction of heart cytoplasmic and mitochondrial 'malic' enzymes does not parallel that found in liver. Heart mitochondrial enzyme is slowly induced from birth onwards. 3. NADP+-dependent isocitrate dehydrogenase has similar activities in all tissues in 18-day foetuses. 4. Heart mitochondrial NADP+-dependent isocitrate dehydrogenase is greatly induced in the adult, where it attains a 10-fold higher activity than in liver. 5. The physiological functions of mitochondrial 'malic' enzyme and NADP+-dependent isocitrate dehydrogenase are discussed.  相似文献   

2.
Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes.  相似文献   

3.
A soluble NAD+-linked isocitrate dehydrogenase has been isolated from Crithidia fasciculata. The enzyme was purified 128-fold, almost to homogeneity, and was highly specific for NAD+ as the coenzyme. There is also a cytoplasmic NADP+-linked and a mitochondrial isocitrate dehydrogenase in the organism. Studies of the physical and kinetic properties of the soluble NAD+-isocitrate dehydrogenase from this organism showed that it resembled microbial NADP+-isocitrate dehydrogenases in general, all of which are cytoplasmic enzymes. The enzyme appeared not to be related to other NAD+-isocitrate dehydrogenases, which are found in the mitochondria of eukaryotic cells. The molecular weight of the soluble NAD+-isocitrate dehydrogenase was 105,000 which is within the range of the values for microbial NADP+-isocitrate dehydrogenases. Similar to the NADP+-isocitrate dehydrogenase in this organism, the enzyme was inhibited in a concerted manner by glyoxalate plus oxalacetate. Kinetic analysis revealed that Mn2+ was involved in the binding of isocitrate to the enzyme. Inhibition of the NAD+-linked isocitrate dehydrogenase by p-chloromercuribenzoate could be prevented by prior incubation of the enzyme with both Mn2+ and isocitrate; however, neither ion alone conferred protection. Free isocitrate, free Mn2+, and the Mn2+-isocitrate complex could all bind to the enzyme. Four different mechanisms with respect to the binding of isocitrate to the enzyme were tested. Of these, the formation of the active enzyme-Mn2+-isocitrate complex from (a) the random binding of Mn2+, isocitrate, and the Mn2+-isocitrate complex, or (b) the binding of Mn2+-isocitrate with free Mn2+ and isocitrate acting as dead-end competitors were both in agreement with these data.  相似文献   

4.
9-Oxononanoic acid, which is one of the major products of the autoxidation of linoleic acid, was administered orally to rats and its effect on hepatic lipid metabolism was investigated. The de novo synthesis of fatty acids was strongly reduced 30 h after the administration of 100 mg of 9-oxononanoic acid as compared to that in the saline-administered group. Activity of acetyl-CoA carboxylase decreased by 60% and the activity of carnitine palmitoyltransferase increased by 35% in the test group. The level of triacylglycerols in serum was low and the level of free fatty acids remained unchanged. Thus, the administration of 9-oxononanoic acid decreased hepatic lipogenesis. It is generally believed that the reduction in lipogenesis is facilitated by a decrease in the NADPH level. The ratio of NADPH/NADP in the test group, however, became high as compared to that in the control group, and the activities of glucose 6-phosphate and isocitrate dehydrogenases increased. On the other hand, the levels of CoA derivatives, especially long-chain acyl-CoA, were higher in the test group than in the control. Therefore, the reduction of hepatic lipogenesis in the 9-oxononanoic acid group could be attributed to the inhibition of acetyl-CoA carboxylase by the accumulated long-chain acyl-CoA.  相似文献   

5.
1. Brown adipose tissue (BAT) and liver lipogenesis in vivo estimated by using 3H2O as tracer was very low and did not change significantly between 10 and 20 days after birth. Lipogenesis increased dramatically in both tissues by weaning at 20 days, peaking between 25 and 30 days of age. Since that time the rate of fatty acid synthesis in BAT decreased gradually to reach adult level after 2 months, whereas in the liver there was a sharp decrease of lipogenesis. 2. The activities of fatty acid synthase, citrate cleavage enzyme, malic enzyme and glucose 6-phosphate dehydrogenase essentially followed a similar course of developmental changes as lipogenesis. 3. In contrast to the enzymes listed above NADP-linked isocitrate dehydrogenase remained unaltered over the period studied, whereas lactate and malate dehydrogenases exhibited very high activity at 10 days after birth and from then decreased to reach adult level at the age of about 20 days. 4. The data obtained indicate that no substantial differences could be detected in the developmental pattern of lipogenesis and lipogenic enzyme activities between BAT and liver up to 30 days of age but after this time these processes were not co-ordinated in both tissues. Beyond this time the BAT was characterized by a much higher rate of lipogenesis than the liver. 5. The results are discussed in terms of the nutrient changes and the relationship between thermogenesis and lipogenesis in BAT.  相似文献   

6.
This study describes the effect of some saturated and unsaturated free fatty acids and acyl-CoA thioesters on Trypanosoma cruzi glucose 6-phosphate dehydrogenase and hexokinase activities. Glucose 6-phosphate dehydrogenase was sensitive to the destabilizing effect provoked by free fatty acids, while hexokinase remained unaltered. Glucose 6-phosphate dehydrogenase inhibition by free fatty acids was dependent on acid concentration and chain length. Both enzymes were inhibited when they were incubated with acyl-CoA thioesters. The acyl-CoA thioesters inhibited glucose 6-phosphate dehydrogenase at a lower concentration than the free fatty acids; the ligands glucose 6-phosphate and NADP+ afforded protection. The inhibition of hexokinase by acyl-CoAs was not reverted when the enzyme was incubated with ATP. The type of inhibition found with acyl-CoAs in relation to glucose 6-phosphate dehydrogenase and hexokinase suggests that this type inhibition may produce an in vivo modulation of these enzymatic activities.  相似文献   

7.
By using inhibitors and stimulators of different metabolic pathways the interdependence of the pentose phosphate cycle and lipogenesis in isolated fat-cells was studied. Rotenone, which is known to inhibit electron transport in the respiratory chain, blocked glucose breakdown at the site of pyruvate dehydrogenase. Consequently, because of the lack of acetyl-CoA, fatty acid synthesis was almost abolished. A concomitant decrease in pentose phosphate-cycle activity was observed. Phenazine methosulphate stimulated pentose phosphate-cycle activity about five- to ten-fold without a considerable effect on fatty acid synthesis. The influence of rotenone on both the pentose phosphate cycle and lipogenesis could be overcome by addition of phenazine methosulphate, indicating that rotenone has no direct effect on these pathways. The decreased rate of the pentose phosphate cycle in the presence of rotenone therefore has to be considered as a consequence of decreased fatty acid synthesis. The rate of glucose catabolism via the pentose phosphate cycle in adipocytes appears to be determined by the requirement of NADPH for lipogenesis. Treatment of cells with 6-aminonicotinamide caused an accumulation of 6-phosphogluconate, indicating an inhibition of 6-phosphogluconate dehydrogenase. The rate of glucose metabolism via the pentose phosphate cycle as well as the rate of fatty acid synthesis, however, was not affected by 6-aminonicotinamide treatment and could still be stimulated by addition of insulin. Since even in cells from starved animals, in which the pentose phosphate-cycle activity is extremely low, no accumulation of 6-phosphogluconate was observed, it is concluded that the control of this pathway is achieved by the rate of regeneration of NADP at the site of glucose 6-phosphate dehydrogenase.  相似文献   

8.
9.
The effect of thyroxine on the specific activities of testicular enzymes of the pyruvate/malate cycle involved in lipogenesis were studied in prepubertal, pubertal and adult rats. Thyroxine (25 micrograms/100 g body weight) treatment for 1 month increased the specific activity of isocitrate dehydrogenase (NADP+) but the specific activities of ATP-citrate lyase, malate dehydrogenase and malic enzyme were inhibited. Withdrawal of thyroxine treatment from hyperthyroid rats brought back all enzyme activities to normal. The study reveals a direct, specific influence of thyroxine on different testicular enzymes of the pyruvate/malate cycle.  相似文献   

10.
1. The activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenase were measured in muscles from a large number of animals, in order to provide some indication of the importance of the citric acid cycle in these muscles. According to the differences in enzyme activities, the muscles can be divided into three classes. First, in a number of both vertebrate and invertebrate muscles, the activities of all three enzymes are very low. It is suggested that either the muscles use energy at a very low rate or they rely largely on anaerobic glycolysis for higher rates of energy formation. Second, most insect flight muscles contain high activities of citrate synthase and NAD+-linked isocitrate dehydrogenase, but the activities of the NADP+-linked enzyme are very low. The high activities indicate the dependence of insect flight on energy generated via the citric acid cycle. The flight muscles of the beetles investigated contain high activities of both isocitrate dehydrogenases. Third, other muscles of both vertebrates and invertebrates contain high activities of citrate synthase and NADP+-liniked isocitrate dehydrogenase. Many, if not all, of these muscles are capable of sustained periods of mechanical activity (e.g. heart muscle, pectoral muscles of some birds). Consequently, to support this activity fuel must be supplied continually to the muscle via the circulatory system which, in most animals, also transports oxygen so that energy can be generated by complete oxidation of the fuel. It is suggested that the low activities of NAD+-linked isocitrate dehydrogenase in these muscles may be involved in oxidation of isocitrate in the cycle when the muscles are at rest. 2. A comparison of the maximal activities of the enzymes with the maximal flux through the cycle suggests that, in insect flight muscle, NAD+-linked isocitrate dehydrogenase catalyses a non-equilibrium reaction and citrate synthease catalyses a near-equilibrium reaction. In other muscles, the enzyme-activity data suggest that both citrate synthase and the isocitrate dehydrogenase reactions are near-equilibrium.  相似文献   

11.
Enzyme histochemical techniques were applied to frozen sheep uteri from different stages of the oestrous cycle. The localization and activities of succinate, lactate, glucose-6-phosphate, and isocitrate (NADP+) dehydrogenases and acid and alkaline phosphatases were studied in the luminal and glandular epithelia, caruncle and myometrium. Enzyme activity in the sections was scored on a scale of 0--5. In general the enzyme activity in the uterine caruncles and epithelia was higher than in the myometrium. The myometrium did not show any alkaline phosphatase activity and isocitrate dehydrogenase (NADP+) activity was negligible. The low activities of acid phosphatase and lactate dehydrogenase and the moderate levels of glucose-6-phosphate and succinate dehydrogenases in the myometrium were constant. The caruncular tissue showed high levels of phosphatases and glucose-6-phosphate dehydrogenase, moderate levels of lactate and succinate dehydrogenases, and low levels of isocitrate dehydrogenase (NADP+) throughout the oestrous cycle. Much lower phosphatase and isocitrate dehydrogenase (NADP+) levels were found in the epithelium of deep glands compared with superficial glands. The high activity of acid and alkaline phosphatases in the luminal epithelium and the superficial glands was constant from mid-cycle to ovulation, but a significant decrease was observed immediately after ovulation. The level of dehydrogenases in epithelia was generally high and did not change during the oestrous cycle.  相似文献   

12.
Alkylation at N-1 of the NADP+ adenine ring with 3,4-epoxybutanoic acid gave 1-(2-hydroxy-3-carboxypropyl)-NADP+. Enzymic reduction of the latter, followed by alkaline Dimroth rearrangement and enzymic reoxidation, gave N6-(2-hydroxy-3-carboxypropyl)-NADP+. On the other hand, bromination at C-8 of the NADP+ adenine ring, followed by reaction with the disodium salt of 3-mercaptroproionic acid, gave 8-(2-carboxyethylthio)-NADP+. Carbodimide coupling of the three carboxylic NADP+ derivatives to polyethyleneimine afforded the corresponding macromolecular NADP+ analogues. The carboxylic and the polyethyleneimine derivatives synthesized have been shown to be co-enzymically active with yeast glucose-6-phosphate dehydrogenase, liver glutamate dehydrogenase and yeast aldehyde dehydrogenase. The degree of efficiency relative to NADP+ with the three enzymes ranged from 17% to 100% for the carboxylic derivatives and from 1% to 36% for the polyethyleneimine analogues. On comparing the efficiences with the three enzymes of the N-1 derivatives to the one of the corresponding N6 anc C-8 analogues, the order of activity was N-1 greater than N6 greater C-8, except in the case of the carboxylic compounds with glutamate dehydrogenase, where this order was inverted. None of these modified cofactors were active with pig heart isocitrate dehydrogenase.  相似文献   

13.
Estimates of the activities (Vmax) of four enzymes that generate the coenzyme NADPH, an absolute requirement for tissue fatty-acid synthesis, and of the concentration of NADP plus NADPH were made in lines of mice differing in fat content. These lines had been selected from the same base population for 20 generations, and 3 high, 3 low replicates and 1 unselected control were used. Analyses were performed on liver and gonadal fat pad (GFP) of males at 5 and 10 weeks of age. In both the liver and the GFP, measurable activities of the four enzymes: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (IDH) and malic enzyme (ME) expressed per mg soluble protein were, with minor exceptions, higher in the Fat (F) than in the Lean (L) lines at both ages; the highest ratio being 2.2 for ME in the GFP. The relationships between these measurable activities (Vmax) and in vivo lipogenesis are not however known. When expressed per gram tissue, the ratios for F to L in the GFP were less than 1 in most cases, presumably because of the very different adipocyte numbers and/or sizes between the lines. There were no significant differences between the lines in the concentration of NADP plus NADPH per gram tissue in liver or GFP, suggesting that F lines converted NADP to NADPH faster than L lines. It is predicted that selection on the enzyme activities would be less efficient than direct selection at changing fat content.  相似文献   

14.
Effects of androgens, prolactin (Prl) and bromocriptine (Br) on the specific activities of prostatic (caudal and cranial) enzymes of the pyruvate-malate cycle were studied in castrated mature bonnet monkeys. Castration decreased the activity of NADP+ isocitrate dehydrogenase (ICDH), ATP citrate lyase, malate dehydrogenase (MDH), malic enzyme and fatty acid synthase (FAS). Administration of testosterone propionate (TP)/dihydrotestosterone (DHT) increased the activities of all these enzymes in both lobes. Malate dehydrogenase maintained normal activity. Prl also had a stimulatory effect on the enzymes and was further enhanced when Prl was given in combination with TP/DHT. Unlike Prl, bromocriptine treatment inhibited all the enzymes in both lobes. Thus, prolactin was found to have a direct as well as a synergistic effect with androgens on enzymes of the pyruvate-malate cycle in the prostate of castrated mature monkeys.  相似文献   

15.
NADPH is involved in many basically important anabolic processes. For a long time, pentose phosphate pathway (PPS) was regarded as the most important source of NADPH in fungi. Here we present evidence of a metabolic switch to an alternative NADPH-producing pathway in ageing Penicillium chrysogenum cultures, which involves NADP+ -specific isocitrate dehydrogenase (NADP+ -ID) rather than PPS enzymes. Considering the main biochemical functions of NADPH, we propose that NADP+ -ID could have deep impact on many physiological processes switched on glucose deprivation including proteinase production or penicillin biosynthesis. We also demonstrate that although the alternative pathway was inferior to PPS when the fungus was grown on well-utilisable carbon sources yet it could have an important role in fatty acid biosynthesis as well as in the maintenance of high intracellular NADPH/NADP+ ratios.  相似文献   

16.
Enzyme histochemical methods were performed on sporozoite infected liver tissue of rats in order to gain insight into the nutrition and metabolism of exoerythrocytic forms of Plasmodium berghei. The following enzymes were demonstrated in the hepatocytic stages of the parasites, obtained 41 and 48 h after inoculation of sporozoites: acid phosphatase, cytochrome oxidase, NADH-tetrazolium reductase, succinate dehydrogenase, NAD+ and NADP+ dependent isocitrate dehydrogenase, NADP+-dependent malate dehydrogenase, lactate dehydrogenases, 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenases and alpha-glycerol-phosphate dehydrogenase. The results suggest that a conventional Embden-Meyerhoff pathway, pentose phosphate pathway and Krebs' citric acid cycle may in part be present in these exoerythrocytic parasites. Alkaline phosphatase, nucleoside polyphosphatase, 5' nucleotidase, glucose-6-phosphatase, alpha-glucan phosphorylase, NAD+ dependent malate dehydrogenase, amino-peptidase M and non-specific esterases were not detected by our techniques in the parasite. The enzyme distribution of this intrahepatocytic malaria parasite revealed by histochemistry is compared with the enzyme distribution in the other phases of the parasite's life cycle.  相似文献   

17.
Synopsis The activity and distribution of the following eighteen oxidative and hydrolytic enzyme systems have been investigated in the lung of the adult rat: reduced NAD dehydrogenase, reduced NADP dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, glucose dehydrogenase, glutamate dehydrogenase, -hydroxybutyrate dehydrogenase, acid phosphatase, alkaline phosphatase, glucose-6-phosphatase, adenosine triphosphatase, 5-nucleotidase, non-specific esterase, cytochrome oxidase and -glucuronidase.The low concentration of cells in sections of inflated lung may have made histochemical demonstration of some enzymes impossible because the enzyme concentration was below that detectable by the method employed.The carboxylic acid cycle and the hexose monophosphate shunt were potentially active but fatty acid metabolism was not indicated.The granular reaction sometimes encountered in alveolar cell cytoplasm may be useful for differentiating alveolar cell types, but further cytochemical studies are required to resolve the possible metabolic differences of alveolar cells.  相似文献   

18.
The denaturation of eight purified yeast enzymes, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, alcohol dehydrogenase, beta-fructosidase, hexokinase and glucose-6-phosphate isomerase, promoted under controlled conditions by the free fatty acids myristic and oleic, is selective. Glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1 oxidoreductase, EC 1.1.1.49) is extremely sensitive to destabilization and was studied in greater detail. Results show that chain length and degree of unsaturation of fatty acids are important to their destabilizing effect, and that ligands of the enzyme can afford protection. The denaturation process results in more than one altered form. These results can be viewed in the perspective of the possibility that amphipathic substances, and in particular free fatty acids, may play a role for enzyme degradation in vivo, by initiating steps of selective denaturation.  相似文献   

19.
Factors influencing the utilization of ketone bodies by mouse adipose tissue in vitro were studied. Epididymal fat pads can oxidize DL-Beta-hydroxybutyrate-3-(14)C and acetoacetate-3-(14)C to (14)CO(2) as well as convert these compounds to fatty acid-(14)C. An increased output of (14)CO(2) from Beta-hydroxybutyrate-3-(14)C was noted in response to glucose plus insulin, succinate, oxaloacetate, L-asparate, and L-malate. Fatty acid synthesis from Beta-hydroxybutyrate was enhanced by glucose plus insulin, L-aspartate, L-malate, oxaloacetate, and citrate. Nicotinamide stimulated the oxidation of Beta-hydroxybutyrate but not of acetoacetate to CO(2), and did not affect fatty acid synthesis from either ketone body. Nicotinamide increased NAD(+) and NADP(+) levels in epididymal fat pads without affecting the concentration of NADH and NADPH. "Superlipogenesis" caused by fasting the mice for 48 hr and re-feeding them for 24 hr sharply enhanced CO(2) output and lipogenesis from Beta-hydroxybutyrate. The activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconic dehydrogenase, NADP-malic dehydrogenase, and citrate cleavage enzyme from mouse adipose tissue were increased during "superlipogenesis." Free fatty acid release by epididymal fat pads in vitro was slightly increased by Beta-hydroxybutyrate. The relationship of ketone body metabolism and lipogenesis in adipose tissue is discussed.  相似文献   

20.
The modification of SH-groups in the native isocitrate dehydrogenase accessible to 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) is accompanied by the enzyme inactivation. Isocitrate rather than NADP and MnCl2 protects two SH-groups of the enzyme from modification by DTNB and attendant inactivation. The isocitrate dehydrogenase inactivation by DTNB obeys pseudofirst-order reaction kinetics. The number of DTNB-titrated sulphydryl groups does not change after the isocitrate dehydrogenase denaturation by sodium dodecyl sulphate. In the presence of manganese ions isocitrate and to a lesser extent NADP protect isocitrate dehydrogenase from the inactivation induced by 2,3-butanedione, a specific modifier of arginine residues. It has also been shown that the methylene blue-sensitized photoinactivation of the enzyme associated with the photooxidation of histidine residues decreases in the presence of NADP. These data provide evidence for an essential role of the SH-groups, arginine residues and, probably, histidine in the functioning of NADP-dependent isocitrate dehydrogenase from adrenal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号