首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An upper layer (epiblast) fragment taken laterally from the Anlage fields of neural plate or chordamesoderm of a quail blastoderm, labelled with 3H-glucosamine, was grafted isotopically (in a similar region), isochronically (at the similar stage of development) and isotropically (with the same caudocranial and dorsoventral polarity) in the epiblast of a mesoblast free area of a chicken blastoderm (St 4-5 Vakaet, 1970: full grown primitive streak). On the autoradiographs of the sections through such cultured blastoderms with fully integrated quail grafts, we observed a labelling of the basement membrane laterally and slightly cranially from the labelled graft in its final position. Since only the epiblast and its basement membrane are involved, the pattern of the observed labelling indicates that the grafted and integrated quail epiblast fragment glides in toto over the mediocaudally localized basement membrane, leaving behind a track of radioactivity. Sliding of whole groups of epiblast cells over the basement membrane seems thus to be a normal phenomenon during avian gastrulation.  相似文献   

2.
We have targetted the chick gene Flik with antisense oligodeoxynucleotide treatment at gastrular stages, when it is expressed in organiser-derived structures of the midline (K. Patel et al., 1996, Dev. Biol. 178, 327-342). A specific syndrome of deficient axial patterning and holoprosencephaly is produced. Most aspects of this syndrome can be understood as due to attenuation of dorsalising and neural-inducing signals during gastrulation, followed by failure to maintain the later signals from chordamesoderm/neural midline that pattern the mesodermal and neural cross sections during subsequent stages. Anatomical effects are first apparent at early neurula stages and correspond with what might be expected from a reduced counteraction of the ventralising Bone morphogenetic protein (BMP) pathway at the earlier stages, coupled with inadequate Sonic hedgehog (Shh) signalling subsequently. Delay in the clearing of BMP-4 RNA expression from the presumptive neural region at gastrulation is indeed seen, though chordin RNA expression within organiser derivatives remains normal. Subsequently, specific attenuation of chordamesoderm and neural midline Shh expression is observed. Brief preincubation of stage 4 chick blastoderms in supernatant from Xenopus oocytes that have been injected with Flik RNA prolongs and enhances the competence of their peripheral epiblast to respond to neural inductive signals from grafted Hensen's nodes. This effect specifically mimics that recently observed using microg/ml solutions of recombinant Follistatin (D. J. Connolly et al., 1999, Int. J. Dev. Biol., in press), further suggesting that Flik protein might act in vivo by somehow modulating activity of signalling pathways through BMP or other TGFbeta-related ligands. We discuss the significance of the observations in relation to recent ideas about neural induction, about possible redundancy in gene action, and about subsequent patterning of the axial cross section, suggesting that a Flik function in autocrine/paracrine maintenance of later midline Shh signalling represents a role of the gene separate from that in primary dorsalisation/neural induction.  相似文献   

3.
We have investigated the cell interactions and signalling molecules involved in setting up and maintaining the border between the neural plate and the adjacent non-neural ectoderm in the chick embryo at primitive streak stages. msx-1, a target of BMP signalling, is expressed in this border at a very early stage. It is induced by FGF and by signals from the organizer, Hensen's node. The node also induces a ring of BMP-4, some distance away. By the early neurula stage, the edge of the neural plate is the only major site of BMP-4 and msx-1 expression, and is also the only site that responds to BMP inhibition or overexpression. At this time, the neural plate appears to have a low level of BMP antagonist activity. Using in vivo grafts and in vitro assays, we show that the position of the border is further maintained by interactions between non-neural and neural ectoderm. We conclude that the border develops by integration of signals from the organizer, the developing neural plate, the paraxial mesoderm and the non-neural epiblast, involving FGFs, BMPs and their inhibitors. We suggest that BMPs act in an autocrine way to maintain the border state.  相似文献   

4.
The competence of stage XIII chick epiblast which under the influence of an inductive hypoblast is directed to form a normal primitive streak, is affected by 5-bromodeoxyuridine (BUdR). The BUdR-treated epiblast forms an atypical primitive streak and no axial mesoderm. However, a nonorganized mesenchymal layer is formed between the epiblast and the hypoblast, and atypical neural tissue in the epiblast. BUdR interferes neither with hypoblast formation nor with its inductivity even when blastoderms are treated with BUdR as early as uterine stage VIII and later.  相似文献   

5.
Supernumerary wing structures are readily produced by grafting pieces of wing-bud mesoderm into different locations of host wing buds, but the mechanism underlying their formation remains obscure. The major aim of this study was to examine the ability of posterior quail wing-bud mesoderm, cultured in vitro long enough to lose ZPA (zone of polarizing activity) activity, to stimulate or participate in the formation of supernumerary structures when grafted into anterior slits of host chick wing buds. Small pieces of anterior and posterior quail wing-bud mesoderm (HH stages 21-23) were placed in in vitro culture for up to 3 days. After 2 days, ZPA activity of cultured mesoderm was lost. After the grafting of 2- to 3-day cultured anterior quail wing-bud mesoderm into posterior slits of host chick wing-buds, a consistently high percentage (70%-90%) of grafts result in formation of supernumerary cartilage; in this experiment, however, only a low percentage of grafts resulted in supernumerary cartilage when 2- to 3-day cultured posterior mesoderm was grafted into anterior slits. Taken with controls, these results show that positional differences exist between cultured anterior and posterior wing-bud mesoderm. Serial-section analysis of numerous operated wings has shown several patterns of contribution to supernumerary structures by cells of graft and host. Single supernumerary digits induced by grafts of ZPA mesoderm into anterior slits were normally composed entirely of host cells, but graft cells regularly contributed to skeletal elements of more complex supernumerary structures. Cartilage rods produced by anterior-to-posterior grafts were composed mostly of graft cells, but cartilage nodules and the bases of some rods were often mosaics of chick and quail cells. The results support the proposition that mesodermal cells of the quail wing-bud possess a form of anteroposterior positional memory, but its nature and the means by which the memory of grafted cells interacts with host mesoderm are still not clear.  相似文献   

6.
Summary In early chick blastoderm at stage XIII, the interaction of the hypoblast with the epiblast triggers on the epiblast the first extensive cellular migrations, which result in formation of the primitive streak, the source of the axial mesoderm. During this period, extracellular material (ECM) is secreted and assembled into an organized network in the extracellular spaces and is implicated in regulating the behaviour of the cells that contact it. The first cellular migrations and inductions are inhibited when early chick blastoderm is treated with the glycosylation-perturbing ionophore monensin. The difference in amount and in organization of ECM between monensin-treated embryos and control embryos is striking. Even blastoderms at stage X, which are essentially free of ECM, show extensive ECM after monensin treatment. Monensin produces a substantial change in the polypeptide pattern with the induction or marked accentuation of multiple charged species (isoforms) of polypeptides different from those present in the control embryos. The interference of monensin with the migration and induction mechanisms is permanent in embryos before the primitive streak (PS) stage, and it seems that the respective signals or the sensitivity of the epiblast/hypoblast cells to them must be very stage specific. Monensin-treated embryos probably secrete abnormal ECM that does not provide the proper conditions for the hypoblast to interact with the epiblast cells.  相似文献   

7.
Previous studies of head induction in the chick have failed to demonstrate a clear role for the hypoblast and anterior definitive endoderm (ADE) in patterning the overlying ectoderm, whereas data from both mouse and rabbit suggest patterning roles for anterior visceral endoderm (AVE) and ADE. Based on similarity of gene expression patterns, fate and a dual role in 'protecting' the prospective forebrain from caudalising influences of the organiser, the chick hypoblast has been suggested to be the homologue of the mouse anterior visceral endoderm. In support of this, when transplanted to chick embryos, the rabbit AVE induces anterior markers in the chick epiblast. To reevaluate the role of the hypoblast/ADE (lower layer) in patterning the chick ectoderm, we used rostral blastoderm isolates (RBIs) as an assay, that is, rostral regions of blastoderms transected at levels rostral to the node. RBIs are, therefore, free from the influences of Hensen's node and ingressing axial mesoderm - tissues that are able to induce Ganf, the earliest specific marker of anterior neural plate. We demonstrate, using such RBIs (or RBIs dissected to remove the lower layer with or without tissue replacement), that the hypoblast/ADE (lower layer) is required and sufficient for patterning anterior positional identity in the overlying ectoderm, leading to expression of Ganf in neuroectoderm. Our results suggest that patterning of anterior positional identity and specification of neural identity are separable events operating to pattern the rostral end of the early chick embryo. Based on this new evidence we propose a revised model for establishing anteroposterior polarity, neural specification and head patterning in the early chick that is consonant with that occurring in other vertebrates.  相似文献   

8.
Previous studies showed that grafting wedges of fresh or cultured anterior quail wing mesoderm into posterior slits in chick wing buds resulted in the formation of supernumerary cartilage in a high percentage of cases. When anterior quail mesoderm, which had been dissociated into single cells and pelleted by centrifugation, was grafted into posterior slits of host chick wing buds, supernumerary rods or nodules of cartilage formed in 74.3% of the cases. Few supernumerary skeletal structures formed following control operations in which pelleted dissociated anterior or posterior mesoderm was grafted into homologous locations in host chick wing buds. When pelleted, dissociated anterior mesoderm was cultured in vitro for 1 or 2 days prior to being implanted in posterior locations, the incidence of supernumerary cartilage formation increased to 95.5% and 93.8%, respectively. The incidence of supernumerary cartilage formation following control orthotopic grafts of cultured mesoderm was 11.8% for 1-day and 31% for 2-day cultured anterior mesoderm; for 1- and 2-day cultured posterior mesoderm, the incidence of supernumerary cartilage formation was 20% and 41.7%, respectively. Longer-term culture resulted in a substantial decrease in the percentage of supernumerary cartilage after anterior to posterior grafts and an increase in the incidence of supernumerary cartilage from control grafts. The results demonstrate that quail anterior wing bud mesodermal cells do not need to maintain constant contact with one another in order to retain the ability to form or stimulate the formation of supernumerary cartilage after being grafted into a posterior location in a host wing bud. This ability is retained when the pelleted dissociated mesoderm is cultured in vitro outside the limb field for at least 1 to 2 days.  相似文献   

9.
Anterior neural induction by nodes from rabbits and mice   总被引:1,自引:0,他引:1  
The organizer of vertebrate embryos represents the major regulatory center for the formation of the embryonic axis during gastrulation. The early blastopore lip of amphibia and Hensen's node of the chick at the full-length primitive streak stage possess both a head- and a trunk-inducing potential. In mice, a head-inducing activity was identified in the extraembryonic, anterior visceral endoderm (AVE) by tissue ablation and genetic experiments. Evidence for a similar activity in the AVE from the rabbit was obtained by transplanting below the avian epiblast. However, it was still unclear whether the AVE is the exclusive origin of anterior neural induction or if this activity is recapitulated by the node and/or its derivatives. We report here that nodes from both rabbit and mouse embryos can induce a complete neural axis including forebrain structures upon grafting to chick hosts. Thus, in rabbits and mice not only the AVE, but also the node, possesses a potential for the induction of anterior neural tissue.  相似文献   

10.
BACKGROUND: In Xenopus embryos, fibroblast growth factors (FGFs) and secreted inhibitors of bone morphogenetic protein (BMP)-mediated signalling have been implicated in neural induction. The precise roles, if any, that these factors play in neural induction in amniotes remains to be established. RESULTS: To monitor the initial steps of neural induction in the chick embryo, we developed an in vitro assay of neural differentiation in epiblast cells. Using this assay, we found evidence that neural cell fate is specified in utero, before the generation of the primitive streak or Hensen's node. Early epiblast cells expressed both Bmp4 and Bmp7, but the expression of both genes was downregulated as cells acquired neural fate. During prestreak and gastrula stages, exposure of epiblast cells to BMP4 activity in vitro was sufficient to block the acquisition of neural fate and to promote the generation of epidermal cells. Fgf3 was also found to be expressed in the early epiblast, and ongoing FGF signalling in epiblast cells was required for acquisition of neural fate and for the suppression of Bmp4 and Bmp7 expression. CONCLUSIONS: The onset of neural differentiation in the chick embryo occurs in utero, before the generation of Hensen's node. Fgf3, Bmp4 and Bmp7 are each expressed in prospective neural cells, and FGF signalling appears to be required for the repression of Bmp expression and for the acquisition of neural fate. Subsequent exposure of epiblast cells to BMPs, however, can prevent the generation of neural tissue and induce cells of epidermal character.  相似文献   

11.
In Xenopus, one of the properties defining Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and find that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs. Our results suggest that the two BMP antagonists, noggin and chordin, may serve different functions during early stages of amniote development.  相似文献   

12.
A microinjection technique is described for fate mapping the epiblast of avian embryos. It consists of injecting the epiblast of cultured blastoderms with a fluorescent-histochemical marker, examining rhodamine fluorescence at the time of injection in living blastoderms, and assaying for horseradish peroxidase activity in histological sections obtained from the same embryos collected 24 h postinjection. Our results demonstrate that this procedure routinely marks cells, allowing their fates to be determined and prospective fate maps to be constructed. Two such maps are presented for ectodermal derivatives of the epiblast: one for late stages of Hensen's node progression (stages 3c through 4) and one for early stages of node regression (stages 4 + through 5). These new maps have six significant features. First, they show that regardless of whether the node is progressing or regressing, the flat neural plate extends at least 300 microns cranial to, 300 microns bilateral to and 1 mm caudal to the center of Hensen's node. Second, they confirm our previous fate mapping studies based on quail/chick chimeras. Namely, they show that the prenodal midline region of the epiblast forms the floor of the forebrain and the ventrolateral part of the optic vesicles as well as MHP cells (i.e., mainly wedge-shaped neurepithelial cells contained within the median hinge point of the bending neural plate); in contrast, paranodal and postnodal regions contribute L cells (i.e., mainly spindle-shaped neurepithelial cells constituting the lateral aspects of the neural plate). Third, they reveal a second source of MHP cells, Hensen's node, verifying previous studies of others based on tritiated thymidine labeling. Fourth, they demonstrate, in contrast to studies of other based on vital staining, carbon marking, and chorioallantoic grafting but in accordance with our previous studies based on quail/chick chimeras, that the cells contributing to the four craniocaudal subdivisions of the neural tube (i.e., forebrain, midbrain, hindbrain, and spinal cord) are not yet spatially segregated from one another at the flat neural plate stage, although more cranial neural plate cells tend to form more cranial subdivision and more caudal cells tend to form more caudal subdivisions. Thus, single injections routinely mark multiple neural tube subdivisions. Probable reasons for the discrepancy between our present results and the previous results of others is discussed. Fifth, they suggest that cells contributing to the surface ectoderm and neural plate are not yet completely spatially segregated from one another at the flat neural plate stage, particularly in caudal postnodal regions. Sixth, they delineate the locations of the otic placodes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A previous study showed that grafting wedges of fresh anterior quail wing mesoderm into posterior slits of chick wing buds resulted in the formation of rods and nodules of cartilage in a high percentage of cases (B. Carlson, 1983, Dev. Biol. 101, 97-105). The purpose of the present study was to determine if a similar response could be elicited by grafting pieces of mesoderm that had been cultured in vitro. When pieces of 1-day cultured anterior mesoderm from stage 17-24 donors were grafted into standard posterior slits of chick wing buds, the percentages of supernumerary structures differed little from those which formed after the grafting of pieces of fresh mesoderm. In a time series, grafts of stage 22-23 anterior mesoderm which had been cultured for 1-4 days retained the ability to form cartilage after being grafted into posterior locations. A time series showed that the duration of this retention was longer in cultured mesoderm than it was in mesoderm that remains in the donor wing bud.  相似文献   

14.
Wedges of anterior quail mesoderm grafted into posterior slits in the wing buds of chick embryo hosts result in the formation of rods and nodules of supernumerary cartilage in a high percentage of cases. Identifiable digits do not form unless the ectoderm is allowed to remain on the grafts. Control experiments have shown that wedges of anterior or posterior wing mesoderm placed into homologous locations of host wing buds produce few or no supernumerary skeletal structures. Anterior-to-posterior grafts of stage 17 mesoderm evoke a 71.4% incidence of supernumerary cartilage. This percentage increases to 100% with stage 22 donor mesoderm. The percentage of supernumerary structures formed declines markedly with donor mesoderm of stages 24-30. By stages 35-36, only 10% of the grafts result in the formation of supernumerary structures. The period of decline coincides with the onset of overt cytodifferentiation within the donor mesoderm.  相似文献   

15.
The origin of prospective M cells, which are median neuroepithelial cells that become wedge-shaped during bending of the neural plate and eventually form the midline floor of the neural tube, was determined by constructing quail/chick chimeras and using the quail nucleolar marker to identify quail donor cells in chick host blastoderms. Two possible sites of prospective M-cell origin in the epiblast were examined: a single, midline rudiment located just rostral to Hensen's node and paired rudiments flanking the cranial part of the primitive streak. Our results suggest that M cells arise exclusively from the midline, prenodal rudiment. From this rudiment, M cells extend caudally throughout the entire length of the neuroepithelium. This new information on the origin of prospective M cells will aid in the analysis of their role in neurulation.  相似文献   

16.
We report that a monoclonal antibody, HNK-1, identifies specific regions and cell types during primitive streak formation in the chick blastoderm. Immunohistochemical studies show that the cells of the forming hypoblast are HNK-1 positive from the earliest time at which they can be identified. Some cells of the margin of the blastoderm are also positive. The mesoderm cells of the primitive streak stain strongly with the antibody from the time of their initial appearance. In the epiblast, some cells are positive and some negative at pre-primitive-streak stages, but as the primitive streak develops a gradient of staining intensity is seen within the upper layer, increasing towards the primitive streak. At later stages of development, the notochord and the mesenchyme of the headfold are positive, while the rest of the mesoderm (lateral plate) no longer expresses HNK-1 immunoreactivity. This antibody therefore reveals changes associated with mesodermal induction: before induction, it recognizes the 'inducing' tissue (the hypoblast) and reveals a mosaic pattern in the responding tissue (the epiblast); after primitive streak formation, the mesoderm of the primitive streak that results from the inductive interactions expresses the epitope strongly. Affinity purification of HNK-1-related proteins in various tissues was carried out, followed by SDS-PAGE to identify them. The hypoblast, mesoderm and epiblast of gastrulating chick embryos have some HNK-1-related proteins in common, while others are unique to specific tissues. Attempts have been made to identify these proteins using Western blots and antibodies known to recognize HNK-1-related molecules, but none of the antibodies used identify the bands unique to any of the tissues studied. We conclude that these proteins may be novel members of the HNK-1/L2 family, and that they may have a role in cell interactions during early development.  相似文献   

17.
Endogenous patterns of BMP signaling during early chick development   总被引:4,自引:0,他引:4  
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily signaling molecules that play important roles in a wide variety of developmental processes. In this study, we have used an antibody specific for the phosphorylated and activated form of Smad1 to examine endogenous patterns of BMP signaling in chick embryos during early development. We find complex spatial and temporal distributions of BMP signaling that elucidate how BMPs may function in multiple patterning events in the early chick embryo. In the pregastrula embryo, we find that BMP signaling is initially ubiquitous and is extinguished in the epiblast at the onset of primitive streak formation. At the head process stage, BMP signaling is inactivated in prospective neural plate, while it is strongly activated at the neural plate border, a region which is populated by cells that will give rise to neural crest. During later development, we find a dynamic spatiotemporal activation of BMP signaling along the rostrocaudal axis, in the dorsal neural tube, in the notochord, and in the somites during their maturation process. We discuss the implication of our results for endogenous functions of BMP signaling during chick development.  相似文献   

18.
A previous study revealed that segments of bowel grafted between the neural tube and somites of a younger chick host embryo would induce a unilateral increase in cellularity of the host's neural tube. The current experiments were done to test the hypotheses that muscle tissue in the wall of the gut is responsible for this growth-promoting effect and that the spinal cord enlargement is the result of a mitogenic action on the neuroepithelium. Fragments of skeletal (E8-15) or cardiac muscle (E4-14) were removed from quail embryos and grafted between the neural tube and somites of chick host embryos (E2). Both skeletal and cardiac muscle grafts mimicked the effect of bowel and induced an increase in cell number as well as a unilateral enlargement of the region of the host's neural tube immediately adjacent to the grafts. The growth-promoting effect of muscle-containing grafts was restricted to the neural tube itself and was not seen in proximate dorsal root or sympathetic ganglia. The action of the grafts of muscle was neither species- nor class-specific, since enlargement of the neural tube was observed following implantation of fetal mouse skeletal muscle into quail hosts. Grafts of skeletal muscle or gut increased the number of cells taking up [3H]thymidine in the host's neuroepithelium as early as 9 h following implantation of a graft. The increase in the number of cells entering the S phase of the cell cycle preceded the increase in cell number. These observations demonstrate that muscle-containing tissues can increase the rate of proliferation of neuroepithelial cells when these tissues are experimentally placed together.  相似文献   

19.
Two populations of axial mesoderm cells can be recognised in the chick embryo, posterior notochord and anterior prechordal mesoderm. We have examined the cellular and molecular events that govern the specification of prechordal mesoderm. We report that notochord and prechordal mesoderm cells are intermingled and share expression of many markers as they initially extend out of Hensen's node. In vitro culture studies, together with in vivo grafting experiments, reveal that early extending axial mesoderm cells are labile and that their character may be defined subsequently through signals that derive from anterior endodermal tissues. Anterior endoderm elicits aspects of prechordal mesoderm identity in extending axial mesoderm by repressing notochord characteristics, briefly maintaining gsc expression and inducing BMP7 expression. Together these experiments suggest that, in vivo, signalling by anterior endoderm may determine the extent of prechordal mesoderm. The transforming growth factor (beta) (TGFbeta) superfamily members BMP2, BMP4, BMP7 and activin, all of which are transiently expressed in anterior endoderm mimic distinct aspects of its patterning actions. Together our results suggest that anterior endoderm-derived TGFbetas may specify prechordal mesoderm character in chick axial mesoderm.  相似文献   

20.
Summary The purpose of this study was to determine whether the organizer regions of early avian and amphibian embryos could induce supernumerary (SN) wing structures to develop when they were grafted to a slit in the anterior side of stage 19–23 chick wing buds. Supernumerary digits developed in 43% of the wings that received anterior grafts of Hensen's node from stage 4–6 quail or chick embryos; in addition, 16% of the wings had rods of SN cartilage, but not recognizable SN digits. The grafted quail tissue did not contribute to the SN structures. When tissue anterior or lateral to Hensen's node or lateral pieces of the area pellucida caudal to Hensen's node were grafted to anterior slits, the wings usually developed normally. No SN structures developed when Hensen's nodes were grafted to posterior slits in chick wing buds. Wings developed normally when pieces of the dorsal lip of the blastopore from stage 10–11.5 frog (Xenopus laevis and Rana pipiens) embryos were grafted to anterior slits. No SN digits developed when other tissues that have limb-inducing activity in adult urodele amphibians [chick otic vesicle, frog (Rana pipiens) lung and kidney] or that can act as heteroinductors in neural induction (rat kidney, lung, submaxillary gland and urinary bladder; mouse liver and submaxillary gland) were grafted to anterior slits in chick wing buds. SN digits also failed to develop following preaxial grafts of chick optic vesicles. These results suggest that although the anteroposterior polarity of the chick wing bud can be influenced by factors other than the ZPA (e.g., Hensen's node, retinoids), the wing is not so labile that it can respond to a wide variety of inductively-active tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号