首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Longitudinal Water Movement in the Primary Root of Zea mays   总被引:1,自引:0,他引:1  
The rates of transfer of tritiated water (THO) along lengthsof excised primary roots of Zea mays have been measured undera variety of conditions. The following values of ‘apparentdiffusion coefficients’ for THO in the root tissue havebeen evaluated: 1.5±0.1x10-5 cm2 sec-1 in roots boiledfor 3 min before use,0.5±0.03x10-5 cm2 sec-1 in rootspoisoned with 10-2 M NaF,0.9±0.07x10-5 cm2 sec-1 in rootspoisoned with 10-2 M NaN3,and 2.1±0.2x10-5 cm2 sec-1in normal roots. The bathing medium in all cases was 1.0 mMKCl/0.1 mM CaCl2 with the addition of the inhibitors where appropriate.Thefourfold increase in the rate of THO transfer in normal rootscompared with poisoned ones is attributed to the existence ofa long-distance convective flow in the first case, which isterminated by the addition of inhibitors. Since experimentsshow that this convective flow must occur both acropetally andbasipetally with equal velocity, it is thought to occur in thephloem.By assuming the ‘streaming transcellular strands’model for phloem transport, the rate of movement required togive the observed transfer has been computed as approximately4.5x10-2 cm sec-1 (160 cm h-1).The earlier report of the existenceof a highly impermeable barrier surrounding the xylem vesselshas been further substantiated by the experiments reported here.  相似文献   

3.
Diurnal Cycling in Root Resistance to Water Movement   总被引:5,自引:0,他引:5  
The occurrence of diurnal changes in root resistance of cotton was studied by measuring the flow of water through 35-to70-day-old root systems under a pressure of 3.10 bars or a vacuum of 0.88 bar. The volume of exudate obtained under constant pressure or constant vacuum was 2 to 3 times greater near midday than near midnight indicating that the root resistance apparently was 2 to 3 times greater at night than during the day. The salt concentration of the exudate also cycled; the concentration was lowest at midday and highest at night, hence there was little diurnal variation in the total amount of salt moved per hour. The cycle for volume of exduate, salt concentration, and apparent root resistance had a period of 22 to 26 hours at 24°C. The cycle gradually died away 2 to 3 days after removal of the shoots. The diurnal variations appeared to be controlled by signals from the shoots because the phase of the cycles could be reset by changing the light-dark cycle under which the plants were grown. Cycling was eliminated by exposure to 8 or more days of continuous light before removing the shoots, and cycling could not be entrained by a 6 hour light-6hour dark cycle. Bubbling nitrogen gas through the nutrient medium stopped cycling. A possible role of ion or growth regulator action is discussed.  相似文献   

4.
5.
Intratracheal instillations deliver solutes directly into the lungs. This procedure targets the delivery of the instillate into the distal regions of the lung, and is therefore often incorporated in studies aimed at studying alveoli. We provide a detailed survival protocol for performing intratracheal instillations in mice. Using this approach, one can target delivery of test solutes or solids (such as lung therapeutics, surfactants, viruses, and small oligonucleotides) into the distal lung. Tracheal instillations may be the preferred methodology, over inhalation protocols that may primarily target the upper respiratory tract and possibly expose the investigator to potentially hazardous substances. Additionally, in using the tracheal instillation protocol, animals can fully recover from the non-invasive procedure. This allows for making subsequent physiological measurements on test animals, or reinstallation using the same animal. The amount of instillate introduced into the lung must be carefully determined and osmotically balanced to ensure animal recovery. Typically, 30-75 μL instillate volume can be introduced into mouse lung.Download video file.(31M, mov)  相似文献   

6.
7.
8.
The effects of puncturing the endodermis of young maize roots (Zea mays L.) on their transport properties were measured using the root pressure probe. Small holes with a diameter of 18 to 60 [mu]m were created 70 to 90 mm from the tips of the roots by pushing fine glass tubes radially into them. Such wounds injured about 10-2 to 10-3% of the total surface area of the endodermis, which, in these hydroponically grown roots, had developed a Casparian band but no suberin lamellae. The small injury to the endodermis caused the original root pressure, which varied from 0.08 to 0.19 MPa, to decrease rapidly (half-time = 10-100 s) and substantially to a new steady-state value between 0.02 and 0.07 MPa. The radial hydraulic conductivity (Lpr) of control (uninjured) roots determined using hydrostatic pressure gradients as driving forces was larger by a factor of 10 than that determined using osmotic gradients (averages: Lpr [hydrostatic] = 2.7 x 10-7 m s-1 MPa-1; Lpr [osmotic] = 2.2 x 10-8 m s-1 MPa-1; osmotic solute: NaCl). Puncturing the endodermis did not result in measurable increases in hydraulic conductivities measured by either method. Thus, the endodermis was not rate-limiting root Lpr: apparently the hydraulic resistance of roots was more evenly distributed over the entire root tissue. However, puncturing the endodermis did substantially change the reflection ([sigma]sr) and permeability (Psr) coefficients of roots for NaCl, indicating that the endodermis represented a considerable barrier to the flow of nutrient ions. Values of [sigma]sr decreased from 0.64 to 0.41 (average) and Psr increased by a factor of 2.6, i.e. from 3.8 x 10-9 to 10.1 x 10.-9 m s-1(average). The roots recovered from puncturing after a time and regained root pressure. Measurable increases in root pressure became apparent as soon as 0.5 to 1 h after puncturing, and original or higher root pressures were attained 1.5 to 20 h after injury. However, after recovery roots often did not maintain a stable root pressure, and no further osmotic experiments could be performed with them. The Casparian band of the endodermis is discontinuous at the root tip, where the endodermis has not yet matured, and at sites of developing lateral roots. Measurements of the cross-sectional area of the apoplasmic bypass at the root tip yielded an area of 0.031% of the total surface area of the endodermis. An additional 0.049% was associated with lateral root primordia. These areas are larger than the artificial bypasses created by wounding in this study and may provide pathways for a "natural bypass flow" of water and solutes across the intact root. If there were such a pathway, either in these areas or across the Casparian band itself, roots would have to be treated as a system composed of two parallel pathways (a cell-to-cell and an apoplasmic path). It is demonstrated that this "composite transport model of the root" allows integration of several transport properties of roots that are otherwise difficult to understand, namely (a) the differences between osmotic and hydrostatic water flow, (b) the dependence of root hydraulic resistance on the driving force or water flow across the root, and (c) low reflection coefficients of roots.  相似文献   

9.
Legge, N. J. 1985. Water movement from soil to root investigatedthrough simultaneous measurement of soil and stem water potentialin potted trees.—J. exp. Bot. 36: 1583–1589. Osmotic tensiometers implanted in the stems of three mountainash (Eucalyptus regnans F. Muell.) saplings growing in largeplastic bins recorded stem water potential, w, while soil waterpotential, w, was simultaneously recorded by instruments nearthe trees' roots and in the surrounding root-free soil Earlyin a drying cycle, with the soil still wet, the diurnal variationin 1, was often slight, despite diurnal variations in u approaching2.0 M Pa. Late in a drying cycle the diurnal fluctuations in1, and u were very similar although changes in 1, still laggedup to 1.5 h behind changes in u. 1values at this time occasionallyreached –3.0 MPa with no apparent damage to the treesWatering the bins in daytime led to a response in 1, valueswithin about 5 min, whereas u, values did not respond for afurther 20 min. u values then rose rapidly but after only 1h began to decline again, while 1, values remained at or nearsaturation for the rest of the day. Water uptake hypotheseswhich attribute an important role to a soil-root interface resistanceare not supported by these data Key words: —Soil water potential, penrhizal gradients  相似文献   

10.
Protein Surface Dynamics: Interaction with Water and Small Solutes   总被引:1,自引:0,他引:1  
Previous time resolved measurements had indicated that protons could propagate on the surface of a protein, or a membrane, by a special mechanism that enhances the shuttle of the proton towards a specific site [1]. It was proposed that a proper location of residues on the surface contributes to the proton shuttling function. In the present study, this notion was further investigated using molecular dynamics, with only the mobile charge replaced by Na+ and Cl ions. A molecular dynamics simulation of a small globular protein (the S6 of the bacterial ribosome) was carried out in the presence of explicit water molecules and four pairs of Na+ and Cl ions. A 10 ns simulation indicated that the ions and the protein's surface were in equilibrium, with rapid passage of the ions between the protein's surface and the bulk. Yet it was noted that, close to some domains, the ions extended their duration near the surface, suggesting that the local electrostatic potential prevented them from diffusing to the bulk. During the time frame in which the ions were detained next to the surface, they could rapidly shuttle between various attractor sites located under the electrostatic umbrella. Statistical analysis of molecular dynamics and electrostatic potential/entropy consideration indicated that the detainment state is an energetic compromise between attractive forces and entropy of dilution. The similarity between the motion of free ions next to a protein and the proton transfer on the protein's surface are discussed.  相似文献   

11.
In functional tissue engineering, the application of dynamic loading has been shown to improve the mechanical properties of chondrocyte-seeded agarose hydrogels relative to unloaded free swelling controls. The goal of this study is to determine the effect of dynamic loading on the transport of nutrients in tissue-engineered constructs. To eliminate confounding effects, such as nutrient consumption in cell-laden disks, this study examines the response of solute transport due to loading using a model system of acellular agarose disks and dextran in phosphate-buffered saline (3 and 70 kDa). An examination of the passive diffusion response of dextran in agarose confirms the applicability of Fick's law of diffusion in describing the behavior of dextran. Under static loading, the application of compressive strain decreased the total interstitial volume available for the 70 kDa dextran, compared to free swelling. Dynamic loading significantly enhanced the rate of solute uptake into agarose disks, relative to static loading. Moreover, the steady-state concentration under dynamic loading was found to be significantly greater than under static loading, for larger-molecular-mass dextran (70 kDa). This experimental finding confirms recent theoretical predictions that mechanical pumping of a porous tissue may actively transport solutes into the disk against their concentration gradient. The results of this study support the hypothesis that the application of dynamic loading in the presence of growth factors of large molecular weight may result in both a mechanically and chemically stimulating environment for tissue growth.  相似文献   

12.
In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.  相似文献   

13.
Roots of month-old tomato plants (Lycopersicon esculentumMill.)were flooded for up to 36h. Shoots were removed just below thecotyledonary node, and the roots subjected to external pneumaticpressures (  相似文献   

14.
Root Density and Water Potential Gradients near the Plant Root   总被引:3,自引:1,他引:2  
The models of Gardner (1960) and Cowan (1965) for water transferto the plant root are used to estimate the differences in waterpotential between the root and the bulk soil for a wide rangeof root densities and water extraction rates at a series ofmatric potentials for a Yolo light clay. For root densities and extraction rates reported both in theliterature and in this paper there is good evidence to suggestthat the large potential gradients originally predicted by Gardnerand Cowan are restricted to situations involving very low rootdensities and high extraction rates in relatively dry soil.  相似文献   

15.
16.
Movement of potato root diffusate (PRD) through soil was examined by using the hatch of eggs from Globodera rostochiensis cysts as an indicator. Porous bags containing cysts were placed at increasing distances and depths from potato roots, whose growth was restricted by nylon mesh. Significantly greater hatch was observed up to 50 cm laterally away from potato roots, compared with hatch in fallow soil. Eight weeks after plant emergence, we detected a concentration gradient of PRD, as measured by egg hatch, that decreased with increasing lateral and vertical distance from the root zone. Egg hatch beyond 5 weeks after plant emergence was not attributed to PRD.  相似文献   

17.
Despite abundant evidence that water transfer from soil to xylem occurs along a pathway regulated by aquaporins (AQPs) water entry is still modeled using principles of ordinary passive diffusion. Problems with this model have been known for some time and include variable intrinsic properties of conductivity Lp, changing reflection coefficients, σ, and an inability to accurately resolve osmotic differentials between the soil and xylem. Here we propose a model of water entry based on principles of facilitated passive diffusion and following Michaelis-Menten formalism. If one accepts that water entry is controlled, at least in part, by AQPs, then a model of ordinary passive diffusion is precluded, as it does not allow for facilitation kinetics. By contrast, recognition of facilitated water entry through protein channels could explain shortcomings of ordinary passive diffusion, such as diurnal variability in conductivity which we have recently shown is directly correlated to diurnal changes in PsPIP2-1 mRNA levels in Pisum sativum.Key Words: aquaporins, root water entry, facilitated passive diffusion, simple passive diffusion, biophysical models  相似文献   

18.
Experiments are described in which bark strips of willow were sealed to polythene tubes having two compartments. This allowed investigations to be made of the transport along the sieve tubes of tritiated water, 14C-labelled sugars, and 32P-phosphates from one compartment, towards a stylet situated in the bark over the other compartment. Although activity from both 14C and 32p was detected in the stylet exudate usually within 1 hour from isotope application, tritium activity was never detected even after a period of 8 hours in most experiments, though in certain cases, very low activities were detected after 4 hours. Subsequent experiments in which stylets were sited over both compartments showed that tritium activity moved laterally into the punctured sieve element more rapidly than either 14C or 32P. Experiments using both live and dead bark in which stylets were not employed, showed that within 4 hours tritium activity had moved by diffusion along the whole length of a bark strip, therefore after this time tritium activity could have moved into the stylet exudate by a diffusional process. The lack of rapid longitudinal movement of tritiated water along the sieve tubes, indicates that the transport process is unlikely to be a mass flow of solution.  相似文献   

19.
Using carboxyfluorescein, a fluorochrome transported along the phloem, we demonstrated that symplasmic phloem unloading in the watermelon root occurred in the basal zone of the meristem adjusting to the elongation zone. In the similar zones of maize and pumpkin roots, a high level of potassium was detected by X-ray microanalysis in the cell walls and intercellular spaces. Potassium concentration in these compartments comprised two-thirds of that in the cytoplasm. Such proportion between potassium concentrations in the cytoplasm and apoplast was characteristic of both the cortex and stele. Since potassium is a dominant osmotically active component in root tissues, such a proportion between its intracellular and apoplastic concentrations provides for a low turgor pressure in the cells of the sink region, in the phloem in particular. This might increase a turgor pressure gradient along the translocation route between source and sink tissues, which is a driving force for phloem assimilate transport.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 591–599.Original Russian Text Copyright © 2005 by Krasavina, Burmistrova, Feshchenko, Nosov.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号