首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved method for the isolation of Euglena chloroplast ribosomes is described which presents a number of advantages over past procedures. First, ribosomes are prepared from whole cell extracts, thus bypassing the need to isolate intact chloroplasts and resulting in a 10-fold improvement in yield. Second, the inclusion of 40 mm Mg2+ in the preparation buffers, while stabilizing the chloroplast ribosomes, precipitates and, thereby, virtually eliminates the cytoplasmic 89 S ribosomes. Third, greater than 95% of the chloroplast ribosomes sediment at 68 S rather than as the damaged 53 S particle frequently generated in other preparation procedures. Fourth, even with a high-salt wash to remove endogenous factors, the chloroplast ribosomes still sediment at 68 S and are just as active in in vitro protein synthesis as are E. coli ribosomes. These ribosomes have been tested for activity with elongation factors from prokaryotes, eukaryotes, and the chloroplast itself, and the results have been compared to those obtained with E. coli and wheat germ ribosomes. The data may be summarized as follows: (a) Chloroplast ribosomes use E. coliEF-TuTs and EF-G with the same efficiency as do E. coli ribosomes in protein synthesis, (b) E. coli and chloroplast ribosomes can use Euglena chloroplast EF-G to catalyze translocation, but wheat germ ribosomes cannot, (c) Wheat germ EF-1H and EF-2 are highly active in polymerization with wheat germ ribosomes, but ribosomes from neither E. coli nor the chloroplast are able to recognize these factors, (d) All three types of ribosomes accept Phe-tRNA from E. coli EF-Tu although to differing degrees. However, neither chloroplast nor E. coli ribosomes recognize wheat germ EF-1H for the binding of Phe-tRNA.  相似文献   

2.
The effect of T4 phage on ribosomes in terms of their ability to bind RNA viral template is examined. It is found that the 30S subunits of T4 ribosomes bind MS2 RNA as efficiently as do the subunits of uninfected E. coli ribosomes. On the other hand, analyses of the formation of 70S initiation complex, presumably from MS2 RNA-30S ribosome complex, using both labeled MS2 RNA and initiator tRNA, reveal that T4 ribosomes are only about half as active as E. coli ribosomes. The latter phenomenon has been reported previously. These results suggest that, following T4 infection, ribosomes are modified in such a way that the attachment of fMet-tRNAf to MS2 RNA-30S subunit complex is impaired.  相似文献   

3.
Viomycin was observed to inhibit poly[U]- or f2 RNA-directed protein synthesis in an E. coli cell-free system. The former was more profoundly affected than the latter. Both initiation complex formation on the 30S ribosomal subunit and on 70S ribosomes were prevented by the antibiotic. In the peptide chain elongation process, viomycin did not significantly affect aminoacyl-tRNA binding to ribosomes and the peptidyl transferase reaction, but markedly inhibit translocation of peptidyl-tRNA from the acceptor site to the donor site. The mechanism of action of the drug appeared to be unique.  相似文献   

4.
Salt-washed ribosomes from Escherichia coli, plus stringent protein, form more ppGpp than pppGpp from GTP at all times, but unwashed ribosomes are shown to synthesize primarily pppGpp as the initial product.  相似文献   

5.
It has been found that the most widely used method for the extraction of guanosine 5′-diphosphate, 3′-diphosphate (ppGpp) from E. coli (1 M formic acid at 0°) results in its in vitro degradation to ppGp and GDP. A comparison with several other extraction procedures indicated that this breakdown is due to the low pH of the reagents used during extraction. This degradation can largely be prevented by using a new extraction technique which involves freezing and thawing of the cells in the presence of lysozyme at a neutral pH followed by treatment with deoxycholate. With this method it is possible to recover from three to five times as much ppGpp from both unstarved and amino acid starved stringent strains of E. coli as compared with the most widely used formic acid procedure. Consequently, it will be necessary to reevaluate the ppGpp values obtained from cells when formic acid or other low pH reagents were used during extraction.  相似文献   

6.
The binding of [3H]kanamycin to E. coli ribosomes and ribosomal subunits was studied by equilibrium dialysis and Millipore filter methods. The 70S ribosome bound ca. two molecules up to the antibiotic concentration of 10 uM, and more at higher concentrations. Each ribosomal subunit was observed to possess one major binding site, and the affinity of the small ribosomal subunit was greater than that of the large subunit. The binding of [3H]kanamycin to ribosomes and ribosomal subunits was reversed by neomycin or gentamicin, but not by streptomycin and chloramphenicol. Kanamycin, neomycin and gentamicin interfered with the binding of [14C] tuberactinomycin O. Translocation of N-Ac-Phe-tRNA was markedly inhibited by kanamycin, neomycin or gentamicin, but not by streptomycin.  相似文献   

7.
Chemically formylated Met-tRNAmMet and Met-tRNAfMet species from E.coli and yeast were tested for their capacity to serve as chain-initiators in a cell-free system from E.coli. In the presence of R 17 mRNA, initiation factors and E.coli ribosomes, all four Met-tRNAs could form functional initiation complexes as measured by ribosomal binding kinetics, fMet-puromycin formation and synthesis of a dipeptide fMet-Ala. Unformylated Met-tRNAfMet from E.coli displayed significantly less activity as a peptide chain-initiator than the formylated Met-tRNAmMet species from E.coli and yeast. Although the latter tRNAs were less effective initiators than the “physiological” initiator tRNAs, the data seem to indicate that a blocked α-amino group represents the major token of identification by which Met-tRNA is admitted to function in E.coli peptide chain initiation.  相似文献   

8.
A possible complex containing RNA processing enzymes   总被引:5,自引:0,他引:5  
The three enzymes, RNAase III, RNAase E and RNAase P participate in the processing of RNA precursors in Escherichia coli. In extracts which contain a mutated RNAase III or RNAase E under certain conditions RNAase P activity is not expressed while in the wild-type extract it is. Upon high-speed centrifugation of a cell extract from a strain of E.,coli, which contains all these three enzymes, the majority of RNAase P, RNAase III and RNAase E activities sediment as particles heavier than their known sizes. In a sucrose density gradient of the cell extract, part of RNAase E and RNAase P activities co-sediment while most of the RNAase III activity is found toward the top of the gradient. This behavior is distinct from other ribonucleases such as RNAase II and RNAase H, which do not sediment as complexes. This complex does not seem to be caused merely by the association of the enzymes with ribosomes.  相似文献   

9.
Three forms of the 50 S ribosomal subunit of Escherichia coli have been separated by agarose/acrylamide gel electrophoresis. The slowest migrating form, S-50 S, corresponded to native 50 S subunits and contained four copies of proteins L7L12. Removal of the four copies of this protein produced a more rapidly migrating form, M-50 S. The M-50 S form was then converted to the fastest migrating form, F-50 S, by removal of additional proteins, including L10 and L11. A one-step removal of a pentameric complex of four copies of L7L12 plus L10 converted the S-50 S subunit directly to the F-50 S subunit. These proteins recombined specifically with the appropriate protein-deficient 50 S subunit at 3 °C to reform the S-50 S subunit, i.e. the M-50 S subunit was converted back to the S-50 S form by the addition of purified proteins L7L12; and the F-50 S subunit bound the pentameric complex of L7L12 and L10 to form S-50 S. The binding of the pentameric complex, isolated by glycerol gradient centrifugation, supports the model that all four copies of proteins L7L12 are together in one part of the ribosome called the “L7L12 stalk”. Only the four copies of L7L12 were removed from the 50 S subunit in low salt (0.125 m-NH4Cl) plus 50% ethanol at 0 °C. These ribosomes (in the M-50 S form) had less than 5% of the peptide-synthesizing activity of untreated control ribosomes as measured by a poly(U) translation system in vitro. Peptide-synthesizing activity was restored, upon addition of L7L12, back to the treated ribosomes to give 50 S subunits (S-50 S) with a full complement of four copies of L7L12. Antibody to proteins L7L12 bound only to the S-50 S subunits, producing four new bands separated by gel electrophoresis. The bands represented complexes of one, two, three and four antibodies bound to a 50 S subunit. This result was obtained using either 50 S subunits or 70 S tight couples and indicated that all four copies of L7L12 are either located at a single site in the L7L12 stalk or, much less likely, are divided between two symmetrical sites. Proteins L7L12 were not only accessible to their specific antibody but could also be removed from 70 S ribosomes and polyribosomes without causing their dissociation into subunits. The ribosomes and polyribosomes had an increased gel electrophoretic mobility which was reversed by addition of proteins L7L12.  相似文献   

10.
Ampicillin-resistant colonies that did not utilize galactose appeared sporadically in cultures of galactose genedeleted Escherichia coli K-12 cells containing colicin E1 factor carrying genes for galactose utilization and ampicillin resistance. Most of these colonies contained small plasmid DNAs. These plasmids existed as monomer DNAs within E. coli K-12 cells and formed a series of covalently closed circular DNA molecules ranging in size from 6.3 × 106 to 15.1 × 106 daltons. The use of these plasmid DNAs was discussed.  相似文献   

11.
Summary Experiments were undertaken to characterize the cytoplasmic ribosomal proteins (r-proteins) in Chlamydomonas reinhardtii and to compare immunologically several cytoplasmic r-proteins with those of chloroplast ribosomes of this alga, Escherichia coli, and yeast. The large and small subunits of the C. reinhardtii cytoplasmic ribosomes were shown to contain, respectively, 48 and 45 r-proteins, with apparent molecular weights of 12,000–59,000. No cross-reactivity was seen between antisera made against cytoplasmic r-proteins of Chlamydomonas and chloroplast r-proteins, except in one case where an antiserum made against a large subunit r-protein cross-reacted with an r-protein of the small subunit of the chloroplast ribosome. Antisera made against one out of five small subunit r-proteins and three large subunit r-proteins recognized r-proteins from the yeast large subunit. Each of the yeast r-proteins has been previously identified as an rRNA binding protein. The antiserum to one large subunit r-protein cross-reacted with specific large subunit r-proteins from yeast and E. coli.  相似文献   

12.
Summary When supplemented with Escherichia coli stringgent factor, 80S ribosomes from various sources failed to support guanosine tetra- and pentaphosphate ((p)ppGpp) synthesis. In contrast, ribosomal proteins from 80S, 60S or 40S particles (mouse embryos, rabbit reticulocytes) crossreacted with the E. coli stringent factor. Significant stimulation of (p)ppGpp synthesis was achieved proteins/ml. These observations may provide additional criteria to detect homologies between eukaryotic and prokaryotic ribosomal proteins.  相似文献   

13.
ATPase activity was restored to the inactive coupling factor, F1ATPase, of Escherichia coli strain AN120 (uncA401) by reconstitution of the dissociated complex with an excess of wild-type α subunit. Large excesses of α gave the highest levels of activity. The other subunits which are required for the reconstitution of ATPase activity, β and γ, did not complement the mutant enzyme. These results indicate that the α polypeptide of the AN120 ATPase is defective.  相似文献   

14.
When EscherichiacoliCP78(rel+) growing on glucose was starved for isoleucine by the addition of valine, the intracellular levels of fructose 6-phosphate, fructose 1,6-bisphosphate and dihydroxyacetone phosphate were abruptly decreased to one-half, but those of glucose 6-phosphate and ATP remained constant. In contrast, this was not the case with CP79(rel?). Chloramphenicol released the response observed in CP78. These results suggest that the glycolytic activity is also under the stringent control. Since only glucosephosphate isomerase[EC 5.3.1.9] was significantly inhibited by guanosine 5′-diphosphate 3′-diphosphate among several glycolytic enzymes tested, the enzyme might be responsible for the decrease observed in CP78.  相似文献   

15.
The binding of [14C]tuberactinomycin O, an antibiotic closely related to viomycin, to E. coli ribosomes has been examined by equilibrium dialysis method. The antibiotic has been observed to bind to the 70S ribosome, which possesses two binding sites: one on the 30S ribosomal subunit and another on the 50S subunit. The affinity for the large subunit is greater than that for the small subunit. The binding to both ribosomal subunits is reversed by viomycin, indicating that tuberactinomycin O and viomycin have the same binding sites on the ribosome. The results seem to be in accordance with the previous finding that viomycin exhibits dual actions on ribosomal function: the inhibition of fMet-tRNAF (initiation) and inhibition of translocation of peptidyl-tRNA.  相似文献   

16.
The aerobic-driven and ATP-driven energy-dependent transhydrogenase activities of membrane particles from two different Ca2+, Mg2+-activated ATPase-negative mutants of E.coli were examined. The activities were low or absent in one of the mutants (DL-54). Reconstitution of the aerobic-driven reaction could be obtained by addition to particles from this mutant of DCCD or of a coupling factor prepared from the parent strain. The coupling factor also restored the ATP-driven reaction. In the other mutant (N144) the aerobic-driven activity was unimpaired, and was not affected by DCCD or by the coupling factor. The difference between the two mutants could be rationalized if the coupling factor ATPase had both a stabilizing and an enzymic function.  相似文献   

17.
The mechanism of action of chain initiation factor 3 in translation was examined by using E. coli 70S ribosomes which were covalently crosslinked with dimethylsuberimidate. Crosslinked ribosomes were inactive in AUG-dependent fMet-tRNA binding, and were not stimulated by IF-3 in poly(U) translation. IF-3 is known to be required for maximal rates of amino acid incorporation with synthetic polynucleotides at 18 mM Mg2+. A direct interaction of IF-3 with 70S ribosomes was demonstrated by crosslinking 14C-labeled IF-3 to 70S ribosomes. The labeled factor was also crosslinked to 30S and 50S ribosomal subunits. A model is presented proposing the mechanism of action of IF-3 on 70S ribosomes.  相似文献   

18.
The 0.5M KCl wash of rabbit reticulocyte ribosomes (I fraction) catalyzes the deacylation of Met-tRNAfMet. Upon DEAE-cellulose column chromatography, the deacylase activity elutes with the 0.1M KCl wash of the column (f1) and is well-resolved from the peptide chain initiation factors (1–3). The deacylase activity is specific for Met-tRNAfMet (retic., E.coli). Other aminoacyl tRNAs tested including fMet-tRNAfMet (retic., E.coli), Phe-tRNA (E.coli), Val-tRNA (retic.), and Arg-tRNA (retic.) are completely resistant to the action of the deacylase. In the presence of the peptide chain initiation factor (IF1) and GTP, retic. Met-tRNAfMet forms the initiation complex Met-tRNAfMet:IF1:GTP (2), and in this ternary complex Met-tRNAfMet is not degraded by the deacylase. E.coli Met-tRNAfMet binds to IF1 independent of GTP, and in this complex, this Met-tRNAfMet is degraded by the deacylase.Prior incubation of f1 with Met-tRNAfMet (retic.) strongly inhibited protein synthesis initiation, presumably due to deacylation of the initiator tRNA. This inhibition by f1 was completely prevented when Met-tRNAfMet (retic.) was pre-incubated with peptide chain initiation factors.  相似文献   

19.
Methanol causes association of 30S and 50S ribosomal subunits from E. coli at MgCl2 concentrations in which they are normally completely dissociated. The 70S ribosome formed under these conditions shows a lower sedimentation velocity and is functionally active in the EF-G GTPase. Association of ribosomal subunits in the presence as well as absence of methanol is affected by washing the ribosomes with 0.5 M NH4Cl. Methanol reduces the Mg2+ concentration required for subunit association as well as for EF-G GTPase activity. The basic requirement for EF-G GTPase activity both with and without alcohol is shown to be the association of 30S and 50S subunits.  相似文献   

20.
Excision of thymine dimers from specifically incised ultraviolet irradiated DNA by E. coli DNA polymerase I is stimulated by concurrent DNA synthesis. The 36,000 molecular-weight “small fragment” obtained by limited proteolysis of DNA polymerase I, which retains only the 5′ → 3′ exonuclease activity, also excises thymine dimers, but at one-tenth the rate of the intact enzyme. However, the rate of excision is increased by addition of the “large” 76,000-molecular weight fragment. With the further addition of the 4 deoxynucleoside triphosphates, permitting DNA synthesis to occur, excision approaches rates observed with the intact enzyme. The same result was obtained with a fragment of DNA polymerase I with 5′ → 3′ exonuclease activity that is present uniquely in polymerase I amber mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号